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PDZ DOMAINS are modular protein-interaction domains
that are specialized for binding to short peptide motifs
at the extreme carboxy (C) termini of other proteins,
athough they can also have other modes of interaction1.
Found in many varied proteins (more than 400 in
humans or mice), PDZ domains are classified on the
basis of the sequence of their preferred C-terminal 
ligands. The structural basis of their binding specificity
is well understood (FIG. 1).

PDZ domains are often arranged in tandem arrays
and/or associated with other interaction domains to
form multidomain scaffold proteins (FIG. 2). By binding
to specific polypeptides through each domain, such
PDZ-containing scaffold proteins can assemble large
molecular complexes. Typically, the PDZ scaffold and
its associated multiprotein complex are targeted to a
specific subcellular site to perform a specialized local
function.

In the nervous system, excitatory synapses, and in
particular their POSTSYNAPTIC DENSITIES (PSDs), contain
many PDZ proteins and provide outstanding examples
of PDZ-domain-based functions (TABLES 1,2). The best
characterized of the synaptic PDZ proteins is post-
synaptic density protein 95 (PSD-95), an abundant
component of the PSD. As the archetypal PDZ-based
scaffold, it is discussed in most detail in this review.
Although PSD-95 is exemplary of PDZ scaffold proteins,

its properties are not common to all PDZ proteins. Even
close relatives of PSD-95 exhibit distinct cell-biological
behaviours, as described below. To illustrate the diverse
structure and function of PDZ proteins, we compare the
PSD-95 family of proteins, which bind directly to NMDA
(N-methyl-D-aspartate) receptors (NMDARs), with the
PDZ proteins that interact with AMPA (α-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid) receptors
(AMPARs).

We regret that, owing to space restrictions, many
excellent publications could not be cited. In many cases
we have cited just the latest publication or a review to
help the reader to navigate the recent literature. Related
information can also be found in other reviews2–5.

The PSD-95 family of PDZ scaffolds
Structure of PSD-95. The PSD-95 family of PDZ scaffold
proteins is encoded by four genes (PSD-95/SAP90
(synapse-associated protein 90), PSD-93/chapsyn-110,
SAP102 and SAP97). These proteins are characterized by
three PDZ domains, an SRC HOMOLOGY 3 (SH3)DOMAIN, and
a GUANYLATE KINASE-LIKE (GK) DOMAIN (FIG. 2). The SH3
and GK domains interact in an intramolecular fash-
ion, but the functional significance of this interaction
is unclear6,7. Electron microscopy images indicate that
purified, full-length PSD-95 monomers are folded
into compact C-shaped particles of around 110 × 60 Å
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PDZ DOMAIN 

A peptide-binding domain that
is important for the organization
of membrane proteins,
particularly at cell–cell junctions,
including synapses. It can bind to
the carboxyl termini of proteins
or can form dimers with other
PDZ domains. PDZ domains are
named after the proteins in
which these sequence motifs
were originally identified (PSD-
95, discs large, zona occludens 1).

POSTSYNAPTIC DENSITY

An electron-dense specialization
of excitatory postsynaptic
membranes that contains a high
concentration of glutamate
receptors and associated
signalling and cytoskeletal
proteins.
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Ion channels, receptors and membrane proteins.
Electron microscopy immunolocalization and tomogra-
phy studies indicate that PSD-95 is located close to the
postsynaptic membrane (at a mean distance of 12 nm
from the postsynaptic membrane), and that it can be
labelled by antibodies from both the extracellular and
cytoplasmic faces of purified PSDs12,13. It is therefore in a
good position to interact with postsynaptic membrane
proteins such as receptors, ion channels and cell-
adhesion molecules, as well as with cytoplasmic proteins
(FIG. 3; TABLE 1). Such interactions are proposed to be
important for the localization and clustering of these
proteins at the postsynaptic membrane. In support of
this idea, PSD-95 can cluster NMDARs and Shaker-type
K+ channels on the surface of heterologous cells14. The
best in vivo evidence that PSD-95 clusters postsynaptic
proteins comes from Drosophila melanogaster, in which
mutations in discs large (Dlg), the D. melanogaster
homologue of PSD-95, abolish synaptic clustering of
Shaker K+ channels, which bind to the PDZ domains 
of Dlg15.

When studied using light microscopy, the clustering
of NMDARs at synapses seems to be independent of
PDZ interactions, as clustering of these receptors is not
altered by mutations of the cytoplasmic tails of NMDAR
subunits, by genetic disruption of PSD-95 or by inter-
fering peptides that disperse synaptic clusters of PSD-95
(REFS 16–18). On the other hand, functional localization
of NMDARs in synapses might depend on PSD-95
(REFS 19–22). Clustering at the cell surface might be related
to inhibition of receptor internalization. Removing the
C-terminal PDZ-binding motif of NR2B, a NMDAR
subunit, enhances its internalization in cultured neu-
rons23. Similarly, PSD-95 suppresses the internalization
of the Kv1.4 K+ channel24 and attenuates agonist-
induced internalization of β1-adrenergic receptors in
non-neuronal cells25.

PSD-95 also interacts with neuroligin, a postsynaptic
membrane protein that interacts trans-synaptically
with β-neurexins, which in turn bind to the PDZ
domain of CASK/LIN226. CASK, another scaffold of the
membrane-associated guanylate kinase (MAGUK)
superfamily of proteins (FIG. 2), is enriched on both sides
of the synapse and interacts with synaptic membrane
proteins such as β-neurexin, syndecan and SynCAM27–29.
As well as mediating cell adhesion, the trans-synaptic
neuroligin–β-neurexin interaction seems to induce
presynaptic differentiation28,30. So, the PSD-95-based
scaffold is probably involved in synaptic adhesion and
synapse development, a role that resembles that of fasci-
clin II (FasII), a D. melanogaster cell adhesion molecule
that interacts with Dlg in the development of the fly
neuromuscular junction31.

Although the emphasis has always been on cell-
biological functions of PSD-95 (for example, surface
delivery or stabilization, synaptic targeting or clustering of
other proteins), it is possible that PSD-95 also function-
ally modulates the activities of membrane proteins to
which it binds. For instance, PSD-95 can suppress the
activity of the inward rectifier K+ channel (Kir2.3),
mainly by reducing its single-channel conductance32.

(T. Nakagawa, T. Walz and M.S., unpublished observa-
tions), implying that PSD-95 is not a flexible set of
protein-interaction domains linked like ‘beads on a
string’. Reinforcing this idea, NMR studies have provided
evidence that the first two PDZ domains of PSD-95 are
specifically oriented relative to each other in a way that
would allow them to interact with C termini coming
from the same direction (REF. 8; FIG. 1).

PSD-95 forms multimers, and this process seems to
be mediated by amino (N)-terminal ‘head-to-head’
interactions9,10. Self-association is a common feature of
many PDZ scaffold proteins, and is sometimes mediated
by direct interactions between PDZ domains (as in the
case of glutamate-receptor-interacting protein (GRIP),
described below11). Multimerization of PDZ scaffolds
might enhance the clustering of partner proteins in
large multimolecular assemblies at specific sites, such as
the PSD.
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Figure 1 | Three-dimensional structure of PDZ domains. a | Ribbon diagram of the structure
of the third PDZ domain of PSD-95 (α-helices in green, β-strands in blue) complexed with its
target C-terminal peptide (purple). For details of the structural basis of specific interactions see 
REFS 1,130. b | Structural model of the PDZ1–PDZ2 domains of PSD-95. The tandem PDZ1 and
PDZ2 domains, which bind to NMDA (N-methyl-D-aspartate) receptor (NMDAR) NR2 subunits
and Kv1 channels, are arranged in similar orientations8. The structure provides a mechanistic
explanation for the synergistic binding of two cytoplasmic tails extending from oligomeric
membrane proteins such as receptors and channels.
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a diffusible ‘transmitter’ that has been implicated in the
regulation of neurotransmission and excitotoxicity.
As NMDARs are permeable to Ca2+, the ternary
NMDAR–PSD-95–nNOS complex might functionally
couple NMDAR gating to nNOS activation. This is 
supported by evidence that disrupting the NMDAR–
PSD-95 interaction by introducing a synthetic peptide
that mimics the last nine residues of NR2B reduces
NMDAR-induced excitotoxicity, without affecting
NMDAR function34.

An abundant PSD protein that binds to PSD-95 is
synaptic RAS GTPase-activating protein (SynGAP), a
GTPase-activating protein (GAP) for the Ras small
GTPase35,36 (TABLE 1). SynGAP is activated by Ca2+/
calmodulin-dependent protein kinase II (CaMKII)37

and suppresses the Ras–extracellular signal-regulated
kinase (ERK) pathway, which regulates synaptic plastic-
ity38. Mice that are heterozygous for a mutant version of

So, PSD-95 can regulate the activity of interacting
membrane proteins by influencing their surface delivery,
endocytosis, subcellular location, subunit composition
and even intrinsic functional properties, such as channel
conductance.

Organization of postsynaptic signalling by PSD-95.
Perhaps the most important biochemical function of
PSD-95 is to organize signalling complexes at the post-
synaptic membrane. In addition to membrane proteins,
PSD-95 interacts with a wide variety of cytoplasmic
signalling molecules (FIG. 3 and TABLE 1). By physically
bringing together cytoplasmic signal-transducing
enzymes and surface receptors (such as NMDARs),
PSD-95 is thought to facilitate signal coupling in the
PSD. An example is the association of PSD-95 with 
neuronal nitric oxide synthase (nNOS)3,33, a Ca2+/
calmodulin-activated enzyme that produces nitric oxide,

SRC HOMOLOGY 3 DOMAIN

(SH3 domain). A
protein–protein interaction
domain that binds to PXXP or
related peptide sequences.

GUANYLATE KINASE-LIKE

DOMAIN

(GK domain). A protein–protein
interaction domain found in the
membrane-associated guanylate
kinase (MAGUK) superfamily of
proteins, which includes PSD-95
and related proteins.

RAS, RAP AND RAC 

Small monomeric G-proteins
that, in their activated GTP-
bound state, interact with and
stimulate their downstream
effectors. Hydrolysis of bound
GTP by the intrinsic GTPase
activity of these proteins
terminates their activity.
Guanine nucleotide exchange
factors (GEFs) stimulate GTP
loading and activate these small
G-proteins; GTPase-activating
proteins (GAPs) inhibit their
activity.
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Figure 2 | Schematic diagram of PDZ proteins. PDZ domains are often found in scaffold proteins as multiple tandem arrays
and/or linked to other kinds of modular protein-interaction domain. PDZ domains are shown as purple ellipses. Other domains are
indicated: Ank, ankyrin repeats; CaM kinase, calmodulin-dependent kinase (CaMK)-like domain; DIL, dilute domain; FABD, FAD-
binding domain; FHA, forkhead-associated domain; GK, guanylate kinase-like domain; L27, domain initially found in LIN2 and LIN7;
NADB, NAD-binding domain; NO, nitric oxide; PTB, phosphotyrosine-binding domain; RA, RAS association domain; RapGAP, Rap
GTPase-activating protein; SAM, sterile α motif; SH3, Src homology 3 domain; WW, domain with two conserved Trp (W) residues;
ZU5, domain present in ZO-1 and UNC5-like netrin receptors. Proteins: Dlg; discs large; GRIP1, glutamate-receptor-interacting
protein 1; LIN7, lin7 homologue; LIN10, lin10 homologue; nNOS, neuronal nitric oxide synthase; PICK1, protein interacting with 
C-kinase 1; PSD-93, postsynaptic density protein 93; PSD-95, postsynaptic density protein 95; SAP97, synapse-associated
protein 97; SAP102, synapse-associated protein 102; Shank, SH3 and ankyrin repeat-containing protein; SPAR, spine-associated
RapGAP; S-SCAM, synaptic scaffolding molecule; ZO-1, zona occludens protein 1. 
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SynGAP show elevated basal activity of ERK in the
hippocampus, increased synaptic AMPAR clustering in
cortical cultures, reduced LONG-TERM POTENTIATION (LTP) in
the CA1 region of the hippocampus and impaired spatial
learning39,40.

PSD-95 and SAP97, another member of the PSD-95
family of proteins, interact with A-kinase-anchoring
protein 79/150 (AKAP79/150) (REF. 41), a scaffold for
protein kinase A (PKA), PKC and the Ca2+/calmodulin-
dependent protein phosphatase calcineurin (also known
as PP2B). The interaction between PSD-95 and AKAP
might bring these kinases and phosphatases close to their
specific substrates in the synapse. For instance, the
SAP97–AKAP complex facilitates the phosphorylation by
PKA of the glutamate receptor GluR1 (REF. 41), a subunit
of AMPARs that binds to SAP97 (see below), and is
required for the downregulation of AMPAR currents by
Ca2+ and PP2B42.As PKA-dependent phosphorylation of
GluR1 at Ser845 is involved in the regulation of AMPAR
recycling43 and synaptic plasticity44,45, the SAP97–AKAP79
complex might be important for the recruitment of
kinases and phosphatases to synaptic AMPARs.

Tyrosine phosphorylation regulates NMDAR activity
and NMDAR-dependent synaptic plasticity46, including
the trafficking of AMPARs47. PSD-95 associates with non-
receptor tyrosine kinases of the Src family48,49 and their
upstream activator,proline-rich tyrosine kinase 2 (Pyk2)50,
both of which are thought to be important for synaptic
plasticity. So PSD-95 might localize the Pyk2–Src 
signalling cascade close to NMDARs; however, the impor-
tance of PSD-95 scaffolds in synaptic regulation by tyro-
sine phosphorylation has not been directly investigated.

Another group of signalling molecules that is attract-
ing growing interest is the group that regulates the
assembly and dynamics of F-actin, which is the predom-
inant cytoskeletal element in DENDRITIC SPINES and is
important for synaptic morphogenesis and plasticity51,52.
PSD-95 binds directly to kalirin-7, a guanine nucleotide
exchange factor (GEF) for RAC1 that promotes spine for-
mation53. However, the molecular mechanisms that link
activated Rac1 to the postsynaptic actin cytoskeleton are
not clear. Kalirin functions downstream of EphB recep-
tors, which have been implicated in the regulation of
NMDARs and spine development54,55.

In addition to kalirin-7 (which activates Rac), the PSD
also contains many regulators of other small GTPases56.
Spine-associated RapGAP (SPAR), an inhibitory GAP
for RAP, binds to PSD-95 and promotes the growth of
dendritic spines. This function depends on SPAR’s GAP
domain. SPAR itself contains a PDZ domain (TABLE 1).
Degradation of SPAR by the ubiquitin–proteasome
pathway leads to loss of PSD-95 and depletion of
synapses57. Overexpression of PSD-95 promotes spine
growth58, although whether this depends on its interac-
tions with kalirin and SPAR remains to be determined.

As well as interacting directly with various signalling
enzymes, PSD-95 is also linked by protein interactions
to other scaffolds in the PSD, including guanylate
kinase-associated protein (GKAP/SAPAP), SH3 and
ankyrin repeat-containing protein (Shank/ProSAP) and
Homer5,59 (FIG. 2 and TABLE 1). These proteins, which are

Table 1 | Proteins that interact with PSD-95 family scaffolds

Interacting Comments on the interacting References
protein proteins

PDZ domains

NR2A–D Subunits of NMDA receptors 131

GluR6 Subunit of kainate receptors 132

δ2 GluR Subunit of δ-ionotropic glutamate receptors 133

β1-adrenergic G-protein-coupled receptor 25
receptor

nAChRc Subunit of neuronal nicotinic acetylcholine 76,77
receptor

5-HT2A and Subunits of 5-HT (serotonin) receptors 134
5-HT2C Rc

ErbB4 A receptor tyrosine kinase for neuregulin 135,136

Kv1 Voltage-gated potassium channel 14

Kir2, Kir3, Inward-rectifying potassium channels 32,124
Kir4 and Kir5

Neuroligin A postsynaptic membrane protein that binds 26,28,30
to β-neurexins and regulates synaptic
adhesion and development

Stargazin family Tetra-spanning transmembrane proteins 64
proteins required for surface and synaptic expression

of AMPA receptors

nNOS Neuronal nitric oxide synthase 3,33

SynGAP An abundant RasGAP of the PSD that 35,36,39,40
regulates synaptic plasticity

Kalirin-7 A guanine nucleotide exchange factor for 53
Rac1 that regulates spine morphogenesis

Fyn, Lyn, Src family non-receptor protein tyrosine 48,49
Src and Yes kinases; might also interact with the SH3

domain of PSD-95

Cypin A cytosolic protein that regulates dendrite 137
patterning by promoting microtubule
assembly

CRIPT A microtubule-binding protein 18

Sec8 A subunit of the exocyst complex involved 115
in protein and vesicle trafficking

KIF1Bα A motor of the kinesin superfamily 111

SH3 domain

Pyk2 A non-receptor tyrosine kinase regulated by 50,138
calcium and PKC and required for LTP
induction

GK domain

GKAP/SAPAP An abundant multi-domain scaffold of PSD 139
that links PSD-95 with Shank

SPAR A postsynaptic RapGAP that regulates spine 57
morphogenesis

SH3 and GK domains

KA2 GluR Subunit of kainate receptors 132

AKAP79/150 An anchoring protein that binds to protein 41
kinase A and protein phosphatase 1

L27 domain

CASK Mammalian homologue of LIN2 140,141

Myosin VI A minus-end-directed actin-based motor 113

Only proteins that interact directly with PSD-95 family scaffolds are listed. These interactions might
not apply to all members of the PSD-95 family. Owing to space limitations, this list is not
comprehensive and not all relevant references are cited. AMPA, α-amino-3-hydroxy-5-methyl-4-
isoxazole propionic acid; GK, guanylate kinase-like domain; LTP, long-term potentiation; NMDA,
N-methyl-D-aspartate; PKC, protein kinase C; PSD-95, postsynaptic density protein 95; Rac, Rap
and Ras, small monomeric G-proteins; RapGAP, Rap GTPase-activating protein; RasGAP, Ras
GTPase-activating protein; SH3 domain, Src homology 3 domain; Shank, SH3 and ankyrin
repeat-containing protein.
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directly with only a subset of PSD proteins, the central
importance of PSD-95 scaffolding in the PSD is
reflected by its stoichiometric abundance60. Mass spec-
trometry analysis indicates that in the PSD, PSD-95 is
an order of magnitude more abundant in molar terms
than NMDARs, and several times more abundant than
GKAP and Shank56.

PSD-95 regulates synaptic transmission. As befits an
important scaffold of the PSD, PSD-95 has a strong
influence on synaptic transmission and plasticity. Over-
expression of PSD-95 potentiates AMPAR-mediated
excitatory postsynaptic currents (EPSCs), an effect that
depends on two palmitoylated N-terminal cysteines in
PSD-95 (REFS 58,61–63). Conversely, if PSD-95 is knocked
down by RNA INTERFERENCE (RNAi), AMPAR-mediated
EPSCs are suppressed (K. Futai, T. Nakagawa,Y. Hayashi
& M. S., unpublished observations). NMDAR-mediated
EPSCs are unaffected by either gain- or loss-of-function
of PSD-95. How does PSD-95 affect AMPAR-mediated
EPSCs, given that it does not interact directly with
AMPARs? In one current model, PSD-95 recruits the
tetraspanning membrane protein stargazin to synapses,
where it binds directly to AMPAR subunits. Stargazin and
its relatives are essential for the surface expression and
synaptic accumulation of AMPARs, and the latter activity
depends on an interaction of the stargazin C terminus
with the PDZ domains of PSD-95 (REFS 64,65).

Synaptic potentiation induced by the overexpression
of PSD-95 seems to mimic LTP, in that it converts silent
synapses into functional synapses, drives GluR1 into
synapses, occludes LTP and enhances LONG-TERM DEPRESSION

(LTD)61–63. Moreover, dominant-negative forms of PSD-
95 can block LTP and experience-driven synaptic
potentiation in the barrel cortex63. These overexpression
studies indicate that PSD-95 has a central role in the
expression of LTP. However, this conclusion needs to be
reconciled with the phenotype of PSD-95-deficient
mice, which show enhanced LTP and reduced LTD16,66.

Dynamic regulation of synaptic PSD-95. If PSD-95 acts
as a physiologically important regulator of synaptic
strength and structure, then it might be expected that its
activity or abundance would be controlled by neural
activity. Synaptic accumulation of PSD-95 requires the
palmitoylation of two N-terminal cysteines (Cys3 and
Cys5)67. Neuronal activity promotes the dispersal of
PSD-95 from synapses, in part by depalmitoylating
these two residues68. Synaptic stimulation also causes
loss of synaptic PSD-95 through the ubiquitin–protea-
some pathway57,69. The latter mechanism could involve
direct ubiquitylation of PSD-95 (REF. 69) or could be
indirect, through the ubiquitylation and degradation of
other postsynaptic regulatory proteins such as SPAR57.
Activity-dependent dispersal or degradation of PSD-95
is known to correlate with a loss of AMPARs and weak-
ening of synapses, but beyond this its physiological
importance is not well understood.

The function of PSD-95 is regulated more acutely
by phosphorylation. Cyclin-dependent kinase 5 (CDK5),
a serine–threonine kinase that is essential for brain

found in the deeper (cytoplasmic) part of the PSD12,13,
bind to additional signalling and cytoskeletal proteins
(TABLE 2). So, PSD-95 is integrated in a large network of
signalling and adaptor proteins, many of which also
contain PDZ domains. Although PSD-95 interacts

Table 2 | Other synaptic PDZ proteins

PDZ protein Interacting protein(s) References

Neurabin, spinophilin/neurabin-II

Localized in spines; Protein phosphatase 1 142
modulates synaptic transmission F-actin
and spine morphology

Afadin

Involved in synapse adhesion Nectin (cell adhesion molecule) 143
and development F-actin

Eph receptors (receptor tyrosine kinases)

Densin-180

Abundant PSD protein; member CaM kinase IIα 144
of LAP (leucine-rich repeat and α-Actinin (F-actin-binding protein)
PDZ) family of proteins δ-Catenin (N-cadherin-interacting protein)

Erbin

LAP protein; ErbB2 (receptor tyrosine kinase 145
suppresses the Ras–MAPK for neuregulin)
signalling pathway PSD-95

δ-Catenin

S-SCAM

Synaptic multi-PDZ scaffold; NMDAR 2
might regulate assembly and Neuroligin
trafficking of synaptic proteins KIF1Bα

β-Catenin (cadherin-associated protein)
nRapGEF (guanine nucleotide exchange
factor for Rap1)

Shank

Important scaffold protein GKAP 59,146
of the PSD; promotes Homer
morphological and functional Cortactin (actin regulatory protein)
maturation of synapse and CIRL (calcium-independent receptor
dendritic spine for α-latrotoxin)

IRSp53 (actin regulatory protein
that binds Rac1 and Cdc42)
ABP1 (F-actin-binding protein)
βPIX (guanine nucleotide exchange
factor for Rac1 and Cdc42)
Sharpin (multimeric PSD protein)

Syntenin

Small scaffold protein AMPA, kainate and metabotropic 94
that binds to phosphatidylinositol glutamate receptor subunits
4,5-bisphosphate Syndecan (transmembrane proteoglycan)

Neurexin (neuronal surface proteins)
SynCAM (synaptic cell adhesion molecule)
Ephrin B
Neurofascin (neural cell adhesion molecule)
Merlin (product of the causal gene
for neurofibromatosis type II)

Tamalin

Possibly involved in trafficking Group I metabotropic glutamate 147
of mGLURs receptor subunits

Cytohesin (guanine nucleotide exchange
factor for ARF small GTPases)
GKAP
S-SCAM

Only proteins that directly interact with the indicated PDZ proteins are described. Owing to space
limitations, this list is not comprehensive and not all relevant references are cited. AMPA, α-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid; Cdc42, Rac, Rap and Ras, small monomeric G-proteins;
GKAP, guanylate kinase-associated protein; KIF1Bα, kinesin family member 1Bα; NMDAR, N-methyl-
D-aspartate receptor; PSD-95, postsynaptic density protein 95; Ras–MAPK, Ras mitogen activated
protein kinase; S-SCAM, synaptic scaffolding molecule.
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learning despite enhanced LTP (these animals also
have defective LTD)16. PSD-95 deficiency in knock-out
mice prevents the maturation of orientation preference
in the visual cortex74 and eliminates behavioural sensi-
tization induced by chronic cocaine administration66.
These in vivo results indicate that PSD-95 is involved in
learning and memory, maturation of cortical circuits
and behavioural responses to drugs of abuse, all of
which presumably reflect the importance of PSD-95 in
synaptic plasticity.

Genetic disruption of PSD-93 reduces NMDAR-
mediated postsynaptic responses and blunts NMDAR-
dependent persistent pain75. In addition, PSD-93
associates with neuronal nicotinic acetylcholine receptors
and is required for the normal function and stability of
neuronal cholinergic synapses76,77. So, PSD-93 might
function as a key scaffold in cholinergic as well as gluta-
matergic synapses. The in vivo importance of SAP97
and SAP102 for brain function is unclear.

development, phosphorylates the N-terminal region of
PSD-95, inhibiting its multimerization, channel cluster-
ing activity and possibly its synaptic localization70. By
contrast, phosphorylation by CaMKII of SAP97 in the N-
terminal L27 domain promotes synaptic targeting of
SAP97, and of its binding partner GluR1 (REF. 71). In D.
melanogaster, CaMKII-dependent phosphorylation of the
first PDZ domain of Dlg decreases the synaptic localiza-
tion of Dlg72. Time-lapse imaging has confirmed that
PSD-95 tagged with green fluorescent protein undergoes
dynamic turnover, although at a slower rate than several
other synaptic proteins73. PDZ scaffolds are probably all
regulated in a dynamic fashion by subcellular redistribu-
tion and protein phosphorylation and degradation.

In vivo functions of PSD-95 proteins. Although the
PSD-95 family of proteins has been extensively studied
in cultured neurons, their functions in vivo are not well
established. PSD-95 mutant mice have impaired spatial

LONG-TERM POTENTIATION

(LTP). A long-lasting
enhancement of synaptic
strength that is elicited by
specific patterns of synaptic
stimulation (for example, high
frequency tetanus). Typically
dependent on NMDA-receptor
activation, and widely believed
to be a means of information
storage in the brain.

DENDRITIC SPINES

Tiny actin-rich protrusions from
the dendrite that form the
postsynaptic compartment for
most excitatory synapses in the
brain.

RNA INTERFERENCE 

(RNAi). A method for
suppressing the expression of a
specific protein based on
targeted hybridization of small
interfering RNAs to the mRNA
encoding that protein.

LONG-TERM DEPRESSION 

(LTD). A long-lasting
suppression of synaptic strength
that is elicited by specific
patterns of synaptic stimulation
(for example, low frequency
stimulation). Typically
dependent on NMDA-receptor
activation, and widely believed
to be a means of information
storage in the brain.
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Figure 3 | A schematic diagram of the organization of PDZ proteins at a mammalian excitatory synapse. The main
PDZ-containing proteins of a glutamatergic synapse are shown, focusing on the postsynaptic density. PDZ domains are
indicated by purple circles. The C-terminal cytoplasmic tails of membrane proteins are indicated by black lines. Specific
protein–protein interactions are indicated by the overlap of proteins. Only a subset of known protein interactions is illustrated.
Although not shown, LIN2, LIN7 and LIN10 are also present postsynaptically, and many of the proteins of the postsynaptic
domain are also present in the presynaptic terminal. Green and blue ellipses in PSD-95 represent SH3 and GK domains,
respectively. Crooked lines indicate palmitoylation of PSD-95 and GRIP. Grey arrows indicate binding and/or regulatory
actions of proteins on the actin cytoskeleton. AKAP79, A-kinase anchor protein 79; AMPAR, AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid) receptor; βPIX, PAAK-interactive exchange factor; CaMKIIα, α-subunit of
Ca2+/calmodulin-dependent protein kinase II; GK, guanylate kinase-like domain; EphR, ephrin receptor; ErbB2, EGF-related
peptide receptor; GKAP, guanylate kinase-associated protein; GRIP, glutamate-receptor-interacting protein; IP3R, IP3
receptor; IRSp53, insulin-receptor substrate p53; K ch, potassium channel; LIN7, lin7 homologue; LIN10, lin10 homologue;
mGluR, metabotropic glutamate receptor; NMDAR, NMDA (N-methyl-D-aspartate) receptor; nNOS, neuronal nitric oxide
synthase; PICK1, protein interacting with C kinase 1; PSD-95, postsynaptic density protein 95; SER, smooth endoplasmic
reticulum; SH3, Src homology 3 domain; Shank, SH3 and ankyrin repeat-containing potein; SPAR, spine-associated
RapGAP; SynGAP, synaptic Ras GTPase-activating protein.
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Differences between PSD-95 family proteins. PSD-95
family proteins are distributed differently from each
other both in the brain and in neurons. PSD-95 and
PSD-93 are most alike in being highly enriched in the
PSD, and this enrichment might be related to the selec-
tive palmitoylation of these proteins78. On the other
hand, SAP102 and SAP97 are found in dendrites and
axons and are abundant in the cytoplasm as well as at
synapses79–81. SAP102 is highly expressed early in post-
natal development, whereas PSD-95 and PSD-93 pre-
dominate at later stages82.

Although they show similar specificities of protein
interaction in vitro, PSD-95 family members interact
with different (but overlapping) sets of proteins in vivo.
For instance, PSD-95 is preferentially associated with
NR2A in vivo, whereas SAP102 is more associated with
NR2B82. The NR2B–SAP102 complex in immature
synapses tends to be replaced by the NR2A–PSD-95/
PSD-93 complex in mature synapses82,83. Overexpression
of PSD-95 promotes synaptic insertion of NR2A rather
than NR2B, thereby modifying the subunit composition
and functional properties of synaptic NMDARs84.
Stargazin family proteins are selectively associated with
PSD-95 and PSD-93 in the brain85. Perhaps most strik-
ingly, SAP97 interacts directly with the AMPAR subunit
GluR1 (REF. 86), whereas the other members of the family
bind directly to NMDAR NR2 subunits. The SAP97–
GluR1 association can be detected early in the secretory
pathway, indicating that SAP97 might be involved in the
trafficking of GluR1 (REF. 80). Overall, it seems that PSD-
95 and PSD-93 are more specifically associated with
synaptic functions, whereas SAP97 and SAP102 might be
more important in trafficking (BOX 1).

PDZ scaffolds associated with AMPARs
The PSD-95 family is mainly associated with NMDARs
and the PSD, with the exception of SAP97 (see above).
AMPAR subunits interact directly with different PDZ
proteins, which might account for the more dynamic
cell-biological behaviour of AMPARs. The C termini 
of the AMPAR subunits GluR2 and GluR3 bind to gluta-
mate-receptor-interacting protein/AMPAR-binding pro-
tein (GRIP/ABP; encoded by two distinct genes, GRIP1
and ABP/GRIP2) and to protein interacting with C
kinase 1 (PICK1). These PDZ-based interactions are
important for the synaptic targeting and regulated traf-
ficking of AMPARs (for recent reviews on this subject, see
REFS 87,88). Here, we focus on recent progress in this area.

GRIP. The GluR2/3 subunit binds specifically to the
PDZ5 domain of GRIP, but the PDZ4 domain is also
required for a strong interaction. The structure of the
tandem PDZ4 and 5 domains reveals that PDZ4 is
unlikely to bind to C-terminal peptides but instead
stabilizes PDZ5 through interdomain interactions89.
GRIP has up to seven PDZ domains (FIG. 2), through
which it can interact with many proteins, including Eph
receptors and their ephrin ligands90; a RAS guanine
nucleotide exchange factor (RasGEF)91; liprin-α92; the
transmembrane protein Fraser syndrome 1 (FRAS1)93;
and, perhaps, also metabotropic and kainite-type 

Box 1 | PDZ scaffolds in trafficking of protein complexes

PDZ-based membrane protein complexes can be moved around the cell as pre-assembled
packages. Transport along microtubule tracks is mediated by motor proteins of the
KINESIN superfamily (KIFs), whereas transport along actin tracks is carried out by motors
of the MYOSIN family. PDZ scaffolds on the surface of cargo vesicles can act as ‘receptors’
for molecular motors by binding to specific kinesins and myosins. For instance, the PDZ
domains of PSD-95 (postsynaptic density protein 95), SAP97 (synapse-associated
protein 97) and S-SCAM (synaptic scaffolding molecule) interact directly with the C
terminus of KIF1Bα (kinesin family member 1Bα), a kinesin motor111. SAP97 can also
bind, through its GK (guanylate kinase-like) domain, to KIF13B/GAKIN (kinesin family
member 13B)112, and through its N-terminal L27 domain to myosin-VI113. PSD-95 family
proteins can also associate indirectly with myosin-V through the PSD-95-binding protein
GKAP (guanylate kinase-associated protein)114. Although it is not a motor protein, the
Sec8 subunit of the ‘exocyst’ complex (which targets secretory vesicles to the cell surface)
also interacts with PSD-95 family members, particularly SAP102 (REF. 115). Dominant-
negative Sec8 inhibits NMDA (N-methyl-D-aspartate) receptor (NMDAR) currents in
neurons, supporting the involvement of the exocyst complex in synaptic trafficking of
an NMDAR–SAP102 complex115.

In Caenorhabditis elegans, a complex of PDZ proteins (CASK/LIN2–LIN7–LIN10) 
(FIGS 2, 3) is important for basolateral targeting of a receptor tyrosine kinase in
epithelia116. LIN10 is also required for the synaptic localization of glutamate receptors117.
Homologous proteins exist in mammalian neurons on both pre- and postsynaptic sides
of the synapse and are probably involved in subcellular targeting of the proteins with
which they interact2. The kinesin family motor KIF17 binds directly to the PDZ1 domain
of LIN10 and might transport a CASK–LIN7–LIN10–NMDAR complex to synapses118,119.
Remarkably, mammalian CASK can redistribute from the plasma membrane to the
nucleus to regulate transcription120,121.

The GluR2/3-binding protein GRIP interacts directly with conventional kinesin (KIF5)
and this association is important for the targeting of AMPA (α-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid) receptors (AMPARs) to dendrites122. The GRIP-
interacting protein liprin-α also binds to KIF1A, another kinesin-like motor123. As for
NMDARs, it is possible that multiple motor proteins contribute to the transport of
AMPARs, each interacting in different ways with the AMPAR protein complex.

So, beyond their well-known function as organizers of protein complexes at the
plasma membrane, there is mounting evidence that PDZ scaffolds have an important
role in intracellular protein trafficking in neurons. Indeed, PDZ proteins can act as the
‘motor receptor’, enabling specific motor proteins to bind to and transport the
complex. DLC, dynein light chain.
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presynaptic and postsynaptic), including the netrin
receptor UNC5H101, various metabotropic glutamate-
receptor subtypes102,103, the dopamine plasma-membrane
transporter104 and the erythroblastic leukaemia viral
oncogene homologue 2 (ErbB2) receptor tyrosine
kinase105. In many of these cases, the interaction with
PICK1 seems to regulate the subcellular localization
and/or surface expression of its protein partners.

Phosphorylation of the C terminus of GluR2 alters its
binding specificity for GRIP and PICK1, and contributes
to synaptic plasticity by altering the trafficking of
AMPARs (BOX 2). There is some controversy regarding
the respective roles of GRIP and PICK1 in the stabiliza-
tion of synaptic versus intracellular AMPARs106–110. This
could be related to the existence of different subpopula-
tions of GRIP and/or PICK1 at synaptic and intracellular
locations96, as well as to difficulties in interpreting the
results of experimental perturbations of AMPAR traf-
ficking. For instance, increased intracellular accumula-
tion of AMPARs could arise from increased endocytosis
of surface receptors or from reduced recycling of intra-
cellular receptors. Moreover, because of overlapping
specificities of PDZ–C-terminal interactions, the pep-
tides that are typically used to interfere with the PDZ
interactions of GRIP and PICK1 are probably not highly
specific for these proteins or for GluR2/3 interactions.

Genetic loss-of-function experiments would be
helpful to dissect out the functions of GRIP and
PICK1. Unfortunately, a generalized GRIP1 knockout
is lethal in mice, and ABP/GRIP2 mutants lack an
obvious phenotype93,95. PICK1-knockout mice are
viable and show normal synaptic transmission in sev-
eral brain areas. However, cerebellar LTD is abolished,
and can be rescued by transient transfection of PICK1-
deficient Purkinje cells with wild type PICK1, but 
not mutants of PICK1 with mutations in the PDZ
domains (J. Steinberg, J. Xia, K. Takamiya, D. Linden
and R. Huganir, unpublished observations).

In addition to AMPARs, GRIP and PICK1 have been
reported to bind kainate receptors (KARs). Disrupting
these PDZ-based interactions with fusion proteins and
peptides decreases KAR-mediated synaptic transmis-
sion, indicating that GRIP and PICK1 interactions
might be required to maintain synaptic KAR function94.

Conclusions
PDZ domains were characterized as protein-interaction
modules only a decade ago, but they have now come of
age. Nowhere is the diversity and function of PDZ pro-
teins better illustrated than at excitatory glutamatergic
synapses. Our view of PDZ proteins has evolved from
one of static adaptors for clustering interacting proteins
to a more dynamic picture in which PDZ scaffolds orga-
nize heterogeneous ensembles of proteins, the composi-
tion of which changes at different locations in the cell,
both during development and in response to neuronal
activity. Moreover, PDZ proteins themselves can be
mobile within neurons, and their activity and expression
levels are regulated by phosphorylation, lipid modifica-
tion and ubiquityation–degradation. As befits their 
central role in the organization of glutamate-receptor

glutamate receptors94. GRIP can also dimerize through 
an interaction between the PDZ6 domains of two
monomers11. GRIP is widely expressed in body tissues
and in neurons — it is present in both axons and den-
drites92. Therefore, the function of GRIP must extend
beyond the regulation of AMPARs. This is supported by
evidence from knockout mice in which the Grip1 gene is
disrupted, which show haemorrhagic blisters and
embryonic lethality93,95.

Certain splice variants of GRIP can be palmitoy-
lated, like PSD-95 and PSD-93, and palmitoylation of
the protein results in it being associated with the
plasma membrane and localized at synapses96. Non-
palmitoylated GRIP mostly associates with intracellular
membranes97. These differentially modified subpopula-
tions of GRIP might stabilize synaptic and intracellular
pools of AMPARs, respectively.

GRIP is believed to be involved in synaptic trafficking
and/or synaptic stabilization of AMPARs and other
interacting proteins. The widespread distribution of
GRIP in cells, and its interactions with motor proteins
(BOX 1), support the hypothesis that it is involved in traf-
ficking98. GRIP can participate in synaptic function not
only by interacting with AMPARs, but also by associating
with Eph receptors and their ephrin ligands, which have
been implicated in dendritic spine morphogenesis and
hippocampal synaptic plasticity99,100.

PICK1. PICK1 is present at synaptic and non-synaptic
sites in neurons, and its PDZ domain shows relatively
promiscuous binding. In addition to PKCα and
GluR2/3, it has many other binding partners (both

KINESINS 

A large family of structurally
related motor proteins that use
ATP to transport specific cargoes
along microtubules.

MYOSINS 

A large family of structurally
related motor proteins that use
ATP to transport specific cargoes
along actin filaments.

Box 2 | Regulation of PDZ interactions by protein phosphorylation

The protein interactions of PDZ-based scaffolds should be regulated to allow controlled
assembly and disassembly of protein complexes at the synapse. There is widespread
evidence that PDZ-ligand interactions are disrupted by phosphorylation, typically on
the C-terminal peptide of the ligand. For instance, phosphorylation of the C termini of
potassium channels124, β1-adrenergic receptors125 and stargazin126,127 prevents them
from binding to the PDZ domains of PSD-95 (postsynaptic density protein 95).
Accordingly, phosphorylated stargazin is poorly enriched in PSD fractions126, and
phosphorylation-mimicking stargazin mutants fail to cluster at synaptic sites and
attenuate synaptic AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)
receptor (AMPAR) currents127. For most of these regulated PDZ interactions, the
specific protein kinase that phosphorylates the PDZ-binding C terminus in vivo is
unknown.

A specific protein kinase has been implicated in regulating interactions between
AMPARs and PDZ domains. Phosphorylation of Ser880 in the C terminus of GluR2
(AMPA glutamate receptor 2) by PKC (protein kinase C) prevents it from interacting
with GRIP/ABP (glutamate-receptor-interacting protein/AMPAR-binding protein) but
not with PICK1 (protein interacting with C-kinase 1), indicating that the
phosphorylation might displace AMPARs from GRIP in favour of PICK1.
Phosphorylation of GluR2 at Ser880 is correlated with the internalization of AMPARs
from synapses and is important for long-term depression (LTD), this mechanism being
particularly well-established for cerebellar LTD107,110,128.

PDZ–peptide interactions can also be regulated by phosphorylation of the PDZ
domain, although this is less common than phosphorylation of the ligand’s C-terminal
motif. For example, Ca2+/calmodulin-dependentprotein kinase II (CaMKII)-dependent
phosphorylation of the PDZ1 domain of SAP97 (synapse-associated protein 97) disrupts
its interaction with the NR2A subunit of NMDA (N-methyl-D-aspartate) receptors
(NMDARs), but not with the GLUR1 (glutamate receptor 1) subunit of AMPARs129.
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beyond their protein interactions and cell-biological
functions. With increasing knowledge of their struc-
ture and function, PDZ interactions could become
plausible targets for pharmaceutical intervention,
thereby opening up a wealth of possibilities for the
treatment of brain diseases.

complexes, PDZ domain scaffolds have been shown
by genetic, electrophysiological and morphological
studies to be essential for controlling the structure,
strength and plasticity of synapses. The next stage of
investigations promises to reveal more insights into
the in vivo significance of synaptic PDZ proteins,
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