
Voltage-gated ion channels were among the first ion chan-
nels to be identified when voltage-clamp recordings were 
first undertaken over half a century ago. After the land-
mark studies by Hodgkin and Huxley1, which established 
the crucial roles of voltage-gated sodium and potassium 
channels in the generation and propagation of action 
potentials in the squid giant axon, the development of 
patch-clamp recording has allowed electrophysiological 
analyses of different subcellular compartments of neurons, 
revealing a rich and varied consortium of voltage-gated 
ion channels on dendrites and axons. Molecular studies 
of voltage-gated ion channels over the past quarter of a 
century further unveiled the remarkably refined and 
mosaic-like patterns of channel distribution. Only recently 
have we begun to appreciate just how the different channel 
isoforms are targeted to different parts of the neuron to 
carry out specific functions. This review focuses primarily 
on recent findings concerning the distribution and target-
ing of voltage-gated ion channels with a focus on sodium, 
potassium, and hyperpolarization-activated cation chan-
nels. We begin with a summary of the nomenclature and 
membrane topology of various voltage-gated ion channels 
to set the framework for understanding the structural 
motifs involved in targeting these channels.

We will consider a model neuron that is receiving 
multiple excitatory and inhibitory inputs (excitatory and 
inhibitory postsynaptic potentials — EPSPs and IPSPs) in 
the somatodendritic region that summate and bring about 
membrane potential changes at the axon initial segment 
(AIS). It is in this region that voltage-gated sodium (Nav) 
and certain voltage-gated potassium (Kv) channels such as 

the KCNQ channel determine the threshold for firing an 
action potential, thereby causing action potential generation 
(FIG. 1)2–5. Action potentials then propagate along the axon 
and, in the case of myelinated axons, ‘jump’ between the 
nodes of Ranvier through saltatory conduction to reach the 
nerve terminals, where activation of voltage-gated calcium 
(Cav) channels causes calcium influx and neurotransmit-
ter release. Kv channels and hyperpolarization-activated 
cyclic nucleotide-gated (HCN) cation channels on den-
drites further control action potential back-propagation, 
and the time course and extent of the passive spread of 
synaptic potentials. Back-propagating action potentials 
might signal the occurrence of recent neuronal excitation 
and influence synaptic plasticity6,7, leading to long-term 
potentiation (LTP) or long-term depression (LTD) depend-
ing on the timing of the back-propagating action potential 
relative to the synaptic input8,9. Action potentials might 
also be generated locally in the dendrites10–14, modulating 
the processing and integration of synaptic inputs of spe-
cific dendritic branches or segments. Synaptic integration 
and the resultant pattern of action potential firing depend 
on the spatial distribution of various channels with dif-
ferent electrophysiological properties — a crucial aspect 
of neuronal differentiation that has recently emerged as a 
fascinating topic for investigation.

The precise distribution of voltage-gated ion channels 
with specific biophysical properties that allow for the 
different electrophysiological properties of axonal and 
somatodendritic regions raises many questions. How 
do voltage-gated ion channels move to where they need 
to be? In how many ways can this feat be achieved in 
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Axon initial segment 
(AIS). The area of the axon near 
the soma that contains a high 
density of voltage-gated sodium 
channels, which are responsible 
for the initial depolarization that 
leads to the initiation of the 
action potential.

Saltatory conduction
The way an action potential 
‘jumps’ between nodes of a 
myelinated axon, for fast 
conduction.

Back-propagation
The propagation of action 
potentials ‘backward’ up the 
dendrites.

The distribution and targeting of 
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Abstract | Voltage-gated ion channels have to be at the right place in the right number to 
endow individual neurons with their specific character. Their biophysical properties together 
with their spatial distribution define the signalling characteristics of a neuron. Improper 
channel localization could cause communication defects in a neuronal network. This review 
covers recent studies of mechanisms for targeting voltage-gated ion channels to axons and 
dendrites, including trafficking, retention and endocytosis pathways for the preferential 
localization of particular ion channels. We also discuss how the spatial localization of these 
channels might contribute to the electrical excitability of neurons, and consider the need for 
future work in this emerging field.
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Long-term potentiation 
(LTP).The prolonged 
strengthening of synaptic 
communication, which is 
induced by patterned input 
and is thought to be involved in 
learning and memory 
formation.

Long-term depression 
(LTD). An enduring weakening 
of synaptic strength that is 
thought to interact with long-
term potentiation (LTP) in the 
cellular mechanisms of learning 
and memory in structures such 
as the hippocampus and 
cerebellum. Unlike LTP, which is 
produced by brief high-
frequency stimulation, LTD can 
be produced by long-term, 
low-frequency stimulation.

Juxtaparanode
A region of the axon that is 
adjacent to the paranodes, 
which are adjacent to the 
nodes of Ranvier and are 
located underneath the myelin 
sheath.

different cell types?  How do the various channel types 
coordinate their activities for neuronal signalling? How 
does channel localization change during development 
and for what purposes? These are the kinds of questions 
that researchers have been trying to tackle as they work 
on different channel isoforms, in different model systems, 
and use different techniques to reach for some mechan-
istic insight. The determination of spatial mechanisms is 
intertwined with temporal considerations, as channels can 
occupy different locations not only during development, 
but also in the mature nervous system. It will take some 
time to determine what global mechanisms exist. Here we 
review our current knowledge of the distribution, target-
ing mechanisms and motifs for several voltage-gated ion 
channels.

Structure of voltage-gated ion channels
Voltage-gated ion channels contain sequence motifs that 
are necessary for their targeting, presumably because 
these sequences mediate interactions with proteins that 
are directly or indirectly involved with channel target-
ing. Voltage-gated ion channels are formed by either one 
α-subunit that is a contiguous polypeptide that contains 
four repeats (domains I–IV), as in the case of Nav and 
Cav channels; or four α-subunits, each with a single 
domain, as in the case of Kv and HCN channels (FIG. 2). 
A single domain contains six α-helical transmembrane 
segments. The fourth transmembrane segment contains 
multiple arginines that are mainly responsible for sens-
ing changes in membrane potential. Between the fifth 
and sixth transmembrane segments is a re-entrant pore 

Figure 1 | General localization of voltage-gated ion channels in a model neuron. a | In general, Nav channels are 
found in the axon initial segment (AIS), nodes of Ranvier and presynaptic terminals. Voltage-gated potassium Kv1 
channels are found at the juxtaparanodes (JXPs) in adult myelinated axons and presynaptic terminals. The Kv channel 
KCNQ is found at the AIS and nodes of Ranvier, and Kv3.1b channels are also found at the nodes of Ranvier. Canonically, 
excitatory and inhibitory inputs (EPSPs and IPSPs — excitatory and inhibitory postsynaptic potentials; yellow and blue 
presynaptic nerve terminals, respectively) from the somatodendritic region spread passively to the AIS where action 
potentials are generated by depolarization, and travel by saltatory conduction to the presynaptic nerve terminals to 
activate voltage-gated calcium (Cav) channels that increase intracellular calcium levels, thereby triggering 
neurotransmitter release. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels have a gradient 
distribution that increases in density from the soma to the distal dendrites (dark blue shading). Kv2.1 channels are found in 
clusters on the soma and proximal dendrites (light yellow ovals). Kv3 channels are found throughout the dendrite. Kv4.2 
channels are located more prominently on distal dendrites (light blue shading). Kv channels in the dendrites contribute to 
controlling back propagation. Strong enough inputs in the dendritic region can generate dendritic action potentials. 
Dendritic Cav channels increase in density toward the proximal dendrites and the soma. b | The left panel shows an 
example of defined channel localization around the nodal region in the myelinated rat optic nerve: Nav channels in green 
at the nodes; Caspr, a cell-recognition molecule, in red at the paranodes; and Kv1.2 channels in blue at the juxtaparanodes 
(horizontal scale bar, 10µm). The right panel depicts the channel composition surrounding a myelinated axon with Nav, 
KCNQ, and Kv3.1b channels at the nodes, no channels at the paranodes underlying the paranodal loops that form septate-
like junctions, and Kv1.1 and Kv1.2 channels at the JXPs under the compact myelin. Panel b (left) reproduced, with 
permission, from REF. 207 © (2000) Blackwell Publishing.
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L1 CAM
A cell adhesion molecule in the 
nervous system that is 
important for cell–cell 
interactions that occur through 
6 immunoglobulin G-like 
protein domains and 3–5 
fibronectin type II domains.

KChIPs
β-subunits of Kv4 channels, 
which have four calcium-
binding EF hands with 
homology to the recoverin/
neuronal calcium sensor -1 
(NCS1) family. 

CD26
A dipeptidyl aminopeptidase 
and cell adhesion protein.

loop, which forms the narrowest part of the pore. The 
interaction of these α-subunits with auxiliary subunits 
(α2, β, γ or δ) as well as other proteins can modulate 
channel function and selectively target some channels 
(such as Nav, Kv1 and KCNQ) to the axon, other chan-
nels (such as HCN, Kv2 and Kv4) to somatodendritic 
regions, and Kv3 and various Cav isoforms to axons and 
dendrites.

Ten genes encode the α-subunits of Nav channels in 
mammals; these genes encode Nav1.1 to Nav1.9, plus an 
atypical sodium channel that is designated Nax and has 
greater than 50% sequence identity to other Nav proteins 
in its transmembrane and extracellular regions)15–17. 
There are four known Nav protein β-subunits (β1, β2, 
β3, β4)18, each with a single transmembrane segment 
and an extracellular domain that is structurally homolo-
gous to the immunoglobulin G-like domains of L1 cell-
adhesion molecules (L1 CAMs)19,20. 

There are approximately 40 mammalian genes for 
Kv channel α-subunits that are grouped into 12 families 
known as Kv1 to Kv12 (REF. 21). Different genes within 

a family are denoted with an additional number after 
the decimal point, such as Kv1.1 and Kv1.2, roughly 
in order of their molecular characterization. Channel 
diversity is greatly enhanced by the ability to form 
homo- or hetero tetrameric channels, with the mix and 
match of members in a subfamily Kv1, Kv3, Kv4, Kv7 
(KCNQ) or Kv10. Of the channels described in this 
review, Kv1 α-subunits associate with the β-subunits 
Kvβ1.1, Kvβ1.2, Kvβ2 and Kvβ3 through their N-ter-
minal T1 domains, with an α4β4 stoichiometry22. Kv4 
subunits are associated with KChIPs, calcium-binding 
proteins that bind to the N-terminus of Kv4 chan-
nels23–25, and DPPX, a single transmembrane-spanning 
protein in which the extracellular domain resembles a 
dipeptidyl aminopeptidase, as well as the cell adhesion 
protein CD26 (REF. 26). 

HCN cation channels (HCN1–4) have the same trans-
membrane topology as Kv channels. However, they are 
non-selective, pass both Na+ and K+ (REF. 3) and are regu-
lated by cyclic nucleotides through a cyclic nucleotide-
binding domain in their C-terminus27.

Figure 2 | General structural topology of voltage-gated ion channels. Voltage-gated sodium (Nav) channels are formed 
from a single polypeptide that consists of four domains (I–IV), each of which has six transmembrane segments (S1–S6). 
The fourth transmembrane segment of each domain contains positively charged arginines that are primarily responsible for 
voltage sensing, as well as the S5-pore loop-S6 region, which forms the pore domain through which sodium ions flow. The 
β-subunits, β1/3 and β2/4, are single transmembrane proteins that have an immunoglobulin-like extracellular domain that 
co-assembles with the Nav α-subunit. Voltage-gated potassium (Kv) channels and hyperpolarization-activated cyclic-
nucleotide-gated (HCN) cation channels have four similar or identical α-subunits, each with a single domain. Kv1 channels 
have cytoplasmic β-subunits that interact with the N-terminal T1 domains. Kv4 channels have two closely associated 
proteins; the intracellular protein KChIP, and the single-span membrane protein DPPX. Voltage-gated calcium (Cav) channels 
have a similar topology to Nav channels in their α-subunits. Cav channels can have up to four associated auxiliary subunits: a 
disulphide-linked α2δ-complex, an intracellular β-subunit, and an occasional γ-subunit with four transmembrane segments. 
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Cav1–3 channels have an α1 subunit that forms 
the ion-conduction pore. Cav1 channels give rise to 
the L-type current, Cav2.1 the P/Q-type current Cav2.2 
the N-type current, Cav 2.3 the R-type current, and Cav3 
the T-type current28,29. Cav channels are associated with 
several auxiliary subunits in vivo that affect channel 
function and expression: a cytosolic β-subunit, a disul-
phide-linked α2δ complex and an occasional γ-subunit, 
which create an α1α2δβγ native Cav channel30. 

Targeting voltage-gated ion channels to axons
At the nodes of Ranvier, Nav and KCNQ channels 
allow currents that spread from one node to initiate 
an action potential at the next node. Kv1 channels at 
the juxtaparanodal regions increase the fidelity of the 
action potential at the nodes and reduce excitability 
during remyelination and development31,32. In addition, 
Kv3 channels reside in the soma, axons and presynap-
tic terminals of interneurons and other neurons that 
undergo high frequency firing, and probably contribute 
to repolarization at the end of an action potential33–35. 
The localization of axonal channels is shown in FIG. 1.

Regarding mechanisms for axonal targeting, studies 
of proteins such as neuron–glia cell adhesion molecule 
(NgCAM) and vesicle-associated membrane protein-2 
(VAMP2) have elucidated at least three feasible mod-
els36,37: directed targeting, transcytosis and selective reten-
tion. NgCAM, a chick homologue of L1 CAM, might be 
transported to the axonal membrane by directed target-
ing or by transcytosis36,37, which involves insertion of 
NgCAM into the somatodendritic membrane, followed 
by its endocytosis and redistribution to the axonal mem-
brane. By contrast, VAMP2, a synaptic vesicle v-SNARE 
(soluble N-ethylmaleimide-sensitive fusion protein 
attachment protein (SNAP) receptor), was uniformly 
inserted into both the somatodendritic and axonal mem-
branes and then endocytosed from the somatodendritic 
membrane, leaving VAMP2 surface channels along the 
axon — a mechanism of selective retention (also known 
as selective endocytosis or elimination) at the axonal 
membrane37. These strategies might be used singly or in 
combination by axonal ion channels.

Signals such as tyrosine motifs38 and di-leucine motifs39, 
which bind clathrin adaptor proteins and thereby link 

Box 1 | Myelin-dependent channel distribution during development

External cues that occur during myelin formation appear to 
have a role in nodal channel clustering. Retinal ganglion 
cells (RGCs), with their axons unmyelinated in the retina but 
myelinated in the optic nerve after they cross the lamina 
cribrosa (see figure), have voltage-gated sodium (Nav) 
channel 1.6 localized to a putative axon initial segment 
(AIS), which is more distal from the soma than previously 
reported, and nodes of Ranvier, whereas Nav1.2 is located in 
the unmyelinated region and partially at the AIS198,199. 
During development, Nav1.2 channels appear first at 
immature nodes of Ranvier, and are eventually replaced by 
Nav1.6 upon compact myelin formation199. Myelination affects channel localization at the nodes of Ranvier but not the 
AIS198, and the appearance of Nav1.6 at the AIS correlates well with the appearance of repetitive firing of rat RGCs during 
development198,200.

In the shiverer mice, which cannot form compact myelin due to a mutation in the myelin basic protein gene, Nav1.6 
channels are no longer clustered in the optic nerve199. By contrast, in myelin deficient rats that have a mutation in the gene 
that encodes proteolipid protein, which causes oligodendrocytic death201, Nav channel clusters also become more diffuse 
in the optic nerve202; however, they remain clustered in the spinal cord106,109. Moreover, trembler mutant mice — which have 
peripheral nerve hypomyelination, because of mutations in peripheral myelin protein-22 — retain node-like clusters of Nav 
channels in the sciatic nerve62,203. Consistent with these observations, for neurons in culture, myelin is important for 
initiating clustering but not for maintenance of the clusters202.

Myelination is required for both initiation and maintenance of voltage-gated potassium channel Kv1.1, Kv1.2 and Kvβ2 
clusters at the juxtaparanodal regions in the mouse optic nerve, as their distribution becomes more diffuse in both chronic 
demyelinating and hypomyelinating mouse models204. Kv1 clusters colocalize with postsynaptic density protein-95 (PSD-
95), and the appearance of this clustering occurs concurrently with myelination during development in the mouse retina204. 
In a chemically induced rat model of demyelination and remyelination, Kv1.1, Kv1.2 and Kvβ2 are redistributed from their 
original juxtaparanodal locations in the rat sciatic nerve on demyelination31. During remyelination, these subunits cluster 
first at the nodes of Ranvier, perhaps to reduce excitability, then to paranodal, and finally to juxtaparanodal regions.

As with Nav channels, Kv3.1b channels persist at the nodes in the spinal cord of myelin deficient rats202. During postnatal 
development, Kv3.1b channels appear after Nav channels, but before the Kv1.2 channels at the juxtaparanodal regions in 
the CNS109. 

Both direct contact with myelinating oligodendrocytes and a diffusible secreted factor have been implicated in the 
clustering of Nav channels199,202,205,206. This secreted factor is inactivated by heat and proteases202, but its identity remains 
elusive205. As with Nav channels, it is unknown what signals are provided by oligodendrocytes or Schwann cells to invoke 
this clustering in Kv channels31,204.

The figure is a schematic of a retinal ganglion cell from which axons project into the optic nerve. Portions of the nerve 
that lie before the lamina cribrosa are unmyelinated and contain Nav1.2 channels, except for the putative AIS, which has 
Nav1.6 channels. In the myelinated regions (the post-lamina cribrosa and the optic nerve) Nav1.6 channels are at the 
nodal regions.
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A glycosylphosphatidylinositol 
(GPI) anchored glycoprotein 
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Ankyrin G
One of three types of ankyrin 
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integral membrane proteins to 
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giant or general, it has two 
main alternative splice forms 
that generate proteins of 
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βIV spectrin
A splice form of the β-subunit 
of spectrin, which is a tetramer 
with two α- and two β-subunits 
that form two antiparallel 
heterodimers. 

these proteins to exocytic and endocytic machinery40–42, 
target proteins to the basolateral membrane in epithelial 
cells and might have a role in targeting to dendrites in 
neurons. However, the signals that target proteins to the 
apical membrane of epithelial cells do not appear to work 
for axonal targeting38. In light of the identification of 
novel dendritic targeting signals for transferrin receptors, 
metabotropic glutamate receptors and AMPA (α-amino-
3-hydroxy-5-methyl-4-isoxazole propionic acid) recep-
tors43–45, it seems likely that axonal targeting will turn out 
to involve novel motifs as well. 

Nav channels. In axons, Nav channels are responsible 
for action potential initiation at the AIS and the nodes of 
Ranvier, action potential propagation along the unmyelin-
ated axon, and action potential back-propagation in den-
drites. In addition to their high concentration at the AIS, 
the biophysical properties of the Nav channels at the AIS 
might be particularly suited for action potential initia-
tion46. The principal Nav channels in the AIS and nodes 
of Ranvier are Nav1.2 and Nav1.6, and their distribution 
can change during development in a myelin-dependent 
manner (BOX 1)17,30,47,48. Nav1.1, Nav1.2, Nav1.3 and Nav1.6 
are expressed mainly in the CNS, Nav1.4 and Nav1.5 are 
found in the cardiac and skeletal muscle systems, and 
Nav1.7, Nav1.8 and Nav1.9 are found in the PNS, although 
there are exceptions (for example, Nav1.2 and Nav1.6 are 
found at the nodes of Ranvier in the sciatic nerve17,30). The 
Nav1.1 and Nav1.3 isoforms were found to be somatoden-
dritic for neurons in the brain30,47, and other distributions 
have been reported for specific cell types. Here we focus 
on the channels that are targeted to the axon30,47,48.

Nav channels associate, or are localized, with a number 
of molecules that might have a role in anchoring or retain-
ing these channels at the nodes of Ranvier. Nav β-subunits 
have an extracellular Ig-like domain that is similar to those 
of Ig-family CAMs19,20, and these β-subunits colocalize 
with several CAMs of this family — neuronal cell adhe-
sion molecule (NrCAM), neurofascin-186 (Nf186) and 
contactin — around the nodes of Ranvier49,50. The β1 and 
β3 subunits interact with Nf186 through their extracellular 
domains51, whereas NrCAM and Nf186 bind to ankyrin G 
through a conserved FIGQY motif in their cytoplasmic C-
termini, which connects these CAMs to the actin cytoskel-
eton through βIV spectrin52. Contactin interacts with the 
Nav β1 subunit and increases the surface expression of 
Nav1.2, Nav1.3 and Nav1.9 in mammalian cell lines53–55. 
Nav α-subunits also interact with the extracellular matrix 
proteins tenascin-C, tenascin-R, and phosphacan — prob-
ably through the Nav β-sub units19,56–58. A summary of pro-
tein interactions and motifs is given in FIG. 3.

The precise mechanisms of these CAMs in anchor-
ing or retaining Nav channels at nodes has been probed 
by assessing their appearance at nodes during develop-
ment49,50. The localization of Nav channels to the AIS 
and nodes of Ranvier is highly correlated with that of 
ankyrin G and βIV spectrin59,60, which appear at the 
AIS of Purkinje cells early in development, followed by 
L1 CAMs and Nav channels61. This contrasts with the 
nodes of Ranvier in the rodent sciatic nerve where the L1 
CAMs, NrCAM and neurofascin appear before ankyrin 

G and Nav channels during development62. Whether 
these differences signify differences between axon initial 
segments and nodes of Ranvier, or between the CNS and 
PNS, remains to be determined; however, in both cases, 
ankyrin G and the CAMs are present before the Nav 
channels, raising the possibility that these proteins might 
be the first to be targeted to the axon, followed by Nav 
channels, which are then retained through association. 

Figure 3 | Voltage-gated sodium channels. Contactin, 
Nf186 (Neurofascin-186), and NrCAM (neuronal cell 
adhesion molecule) are cell adhesion molecules that 
interact and/or colocalize with voltage-gated sodium (Nav) 
channels.  The glycosylphosphatidylinositol (GPI)-anchored 
contactin molecules interact only with the β1 subunit of 
the Nav channel. Only the β1 subunit (indicated by an 
asterisk) interacts with the S5–S6 loop in domain IV (DIV) of 
Nav channels. β2 and β4 subunits are linked by disulphide 
bonds to Nav channels. A region in the II–III linker is 
responsible for preferential somatodendritic endocytosis. 
An ankyrin-G-binding motif that also serves as a clustering 
motif is also in the II–III linker. Nf186 and NrCAM also 
interact with ankyrin G, which, through βIV spectrin, 
connects to the actin cytoskeleton. A di-leucine motif in 
the C-terminus controls axonal compartmentalization. The 
N-terminal membrane-binding domain of ankyrin G has 
four subdomains that consist of six ankyrin repeats that 
bind other proteins, mainly membrane proteins, followed 
by a spectrin-binding domain60. Actin mostly interacts with 
the N-terminal region of one β-subunit in the 
heterotetramer of βIV spectrin60. Interactions are indicated 
by arrows. AIS, axon initial segment, PAT, domain rich in 
proline, alanine and threonine residues.
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Chimeric fusion protein
A polypeptide that is created 
by fusing an amino acid 
sequence of interest to a 
reporter protein.

CD4
A single-span transmembrane 
protein that tends to yield a 
uniform distribution in axons 
and dendrites when it is 
expressed in neurons.

ER export or retention 
motifs
Amino acid sequences that 
have been identified in a 
number of proteins to be 
responsible for either exit from, 
or retention in, the ER (for 
example, RXR).

Endocytic motif
A common amino acid 
sequence (for example, YXXφ) 
that signals clathrin-mediated 
endocytosis.

The effect of ankyrin G and βIV spectrin on the dis-
tribution of Nav channels has been studied in knockout 
mice. In mice lacking the cerebellum-specific form of 
ankyrin G, Nav channels, neurofascin and βIV spectrin 
are no longer concentrated at the AIS; and their Purkinje 
cells showed a decreased ability to initiate action poten-
tials and maintain repetitive firing63,64. Moreover, βIV 
spectrin knockout mice have aberrant ankyrin G and 
Nav localization64. It therefore appears that βIV spectrin 
and ankyrin G act together to stabilize Nav channels at 
the AIS and nodes of Ranvier.

Even though Nav channels are associated with CAMs 
that can interact with ankyrin G, Nav channels them-
selves interact with ankyrin G through a highly con-
served nine amino acid motif — residues 1105 to 1113 
in Nav1.2 — in the II–III loop65–67. Chimeric fusion proteins 
that are composed of the entire Nav1.2 II–III linker and 
proteins not normally localized to the AIS are targeted 
to the AIS in hippocampal cultured neurons66, while 
replacing E1111 with alanine causes a uniform distribu-
tion of CD4–Nav1.2 II–III chimaeras to the axons, somas 
and dendrites68. An additional motif in the II–III linker 
— residues 1010 to 1030 in Nav1.2 — is responsible for 
selective endocytosis from somatodendritic domains in 
hippocampal cultured neurons68. This suggests that Nav 
channels are uniformly inserted into the membrane but 
are retained at the AIS through tethering to ankyrin G, 
while the non-tethered channels in the somatodendritic 
domains are preferentially endocytosed68. 

The motifs in the II–III linker of Nav1.2 might 
further work together with a di-leucine-based motif 
in the C-terminus for channel targeting to the axon. A 
chimaera of CD4 and the C-terminus of Nav1.2 local-
izes to the axon in cultured hippocampal neurons, even 
though it does not contain the ankyrin G-binding region 
for sequestration in the AIS69. This chimaera is selec-
tively endocytosed at dendritic sites, which suggests a 
mechanism of selective elimination for axonal localiza-
tion similar to the mechanism proposed for VAMP2 that 
is described above37. Indeed, the C-terminus of Nav1.2 is 
recognized by components of the clathrin endocytosis 
pathway. Axonal localization and endocytosis are com-
promised when the di-leucine motif within a nine amino 
acid region is mutated to di-alanine. The C-terminus of 
Nav1.6 apparently lacks this motif, and its fusion to CD4 
results in a somatodendritic or non-polarized distribu-
tion of the fusion protein. In this case, perhaps the motifs 
in the II–III linker, which are conserved in Nav1.6, are 
sufficient for localization of this channel to the axon.

Kv1 channels. In the mammalian nervous system, Kv1 
channels are found in the axons and synaptic terminals 
of CNS neurons and at juxtaparanodal regions of myelin-
ated axons in both the CNS and PNS30,31,70–72, where they 
help to control action potential propagation73 and neu-
rotransmitter release74. Kv1 channels are also present in 
the somatodendritic regions of some CNS neurons — for 
example, Kv1.2 on mitral cells in the mouse olfactory 
bulb — but here we focus on the axonal targeting of Kv1 
channels31,71,75. Kv1.1 knockout mice have hyperexcitabil-
ity in the hippocampus and epilepsy, which is consistent 

with a role for Kv1.1 channels in limiting action potential 
generation76. Kv1 subunits associate or colocalize with 
other proteins49,50, including members of the exocytic 
machinery in presynaptic terminals77,78, and a contactin-
associated protein-2 (CASPR2)–TAG1–4.1B complex at 
the juxtaparanodal regions49,50,79. While a precise target-
ing mechanism for Kv channels has yet to be elucidated, 
the interacting proteins and motifs that are involved in 
axonal targeting, channel trafficking and the clustering 
of these channels have been explored as detailed below.

The N-terminal T1 domain that initiates tetrameriza-
tion of Kv1 α-subunits is also essential for axonal target-
ing, which probably involves mechanisms other than 
preferential endocytosis from dendrites80,81; directed 
targeting is possibly involved, but this might be specific 
to neuronal type81. The T1 domain can mediate the inter-
action of Kvβ1 and Kvβ2 subunits with Kv1.1, Kv1.2 and 
Kv1.4, the most abundant α-subunits in the brain22,30,82,83. 
Kvβ subunits, which resemble aldo-keto reductase 
enzymes in their protein fold or structure and in their 
ability to bind the NADP+ moiety84, have been implicated 
in promoting the surface expression and axonal targeting 
of Kv1 channels85,86. Axonal targeting is affected by muta-
tions that disrupt the NADP+ binding site, but not by 
mutations in the putative catalytic active site85, raising the 
intriguing question of whether the redox potential of the 
cell could regulate Kv1 axonal targeting. T1 mutations 
that disrupt axonal targeting do not necessarily disrupt 
Kvβ binding, which indicates that subtle structural differ-
ences in the T1–Kvβ interaction can affect axonal target-
ing80. A summary of protein interactions and motifs can 
be found in FIG. 4.

A combination of endoplasmic reticulum (ER) export 
or retention motifs in the Kv1 channel might regulate 
surface expression. A putative ER export signal in the 
C-terminus of Kv1.4, VXXSL87, allows robust surface 
expression in mammalian cell lines in a process that 
is apparently independent of the action of Kvβ. Kv1.1 
does not contain this signal and is mainly ER retained, 
whereas Kv1.2, which contains a VXXSN motif, has 
both ER and surface distribution in mammalian cell 
lines87,88. The pore region has also been implicated89; 
mutations in this region can switch Kv1.1 from a mostly 
ER-retained channel to one that is surface expressed, and 
Kv1.4 from a mostly surface-expressed channel to one 
that is ER retained. It remains to be determined whether 
these mutations affect tetramer assembly, binding of an 
as-yet-unidentified protein that regulates trafficking, or 
the activity of the channel in the ER, which might affect 
channel trafficking. Finally, a premature stop codon that 
causes truncation of the Kv1.1 C-terminus in patients 
with episodic ataxia type 1 leads to intracellular aggrega-
tion of Kv1.1 in COS1 cells90, underscoring the recurring 
theme that disease-causing mutations might affect chan-
nel folding or trafficking.

An endocytic motif, YXXφ, in the C-terminus of Kv1.2 
regulates the surface expression but not the axonal target-
ing of Kv1.280. Tyrosine (Y)458 in this motif has been impli-
cated in the binding of cortactin, a filamentous (F) actin 
binding protein that binds Arp2/3, which nucleates 
actin filamentation91. Cortactin binding is reduced by the 

R E V I E W S

NATURE REVIEWS | NEUROSCIENCE  VOLUME 7 | JULY 2006 | 553



T1

Pore ER retention motif

T1–Kvβ 
interaction 
needed for 
axonal 
targeting Kv1.4 

VXXSL
ER export motifN

SAP97

N

C
Calnexin

C

N

ER

T1Kvβ

Kvβ Cortactin
HO

Arp2/3

Actin

PSD95C

X(S/T)XV-COOH 
PDZ binding motif

*
YXXφ
endocytic motif

EA1 missense mutation

PSD95
PDZ-domain-
containing protein

4.1Bc
c

c
c

TAG1CASPR2

Laminin G  domain

EGF-like domain

Fibronectin-like domain

Ig-like domain

Discoidin-like domain

Fibrinogen-like domain

ER chaperone
A protein that is located in the 
ER and that helps other 
proteins to fold.

PDZ binding motif 
A PDZ domain binding motif of 
approximately five amino 
acids, which is typically located 
at the extreme C-terminus of a 
protein.

phosphorylation of Y458 through activation of the M1 
muscarinic acetylcholine receptor in a mammalian cell 
line, thereby reducing the Kv1.2 ionic current. It will be 
interesting to explore whether cortactin binding blocks 
the endocytic motif and thereby allows surface expres-
sion, and whether phosphorylation that is regulated by 
neurotransmitters decreases surface density.

Other binding proteins that are implicated in the 
trafficking of Kv1 channels include calnexin and syn-
apse-associated protein-97 (SAP97). Calnexin is an ER 
chaperone that is involved in the folding and assembly 
of membrane proteins92. It promotes the surface expres-
sion of Kv1.2, but not that of Kv1.1 or Kv1.6, apparently 
through the same forward-trafficking pathway that 
is facilitated by Kvβ. SAP97, a membrane-associated 
guanylate kinase (MAGUK), appears to retain Kv1 α-

subunits in ER-derived vesicular structures by binding 
to the same C-terminal PDZ binding motif as postsynaptic 
density protein-95 (PSD-95), thereby inhibiting the traf-
ficking of Kv1.1, Kv1.2 and Kv1.4 (REF. 93).

Clustering of Kv1 channels at the membrane might 
occur through the interactions of PSD-95 with a 
PDZ binding motif (X(S/T)XV-COOH) that lies at the 
C-terminus of Kv1 channels93,94. This motif binds to the 
first or second PDZ domain of PSD-95, which mul-
timerizes, thereby inhibiting internalization and caus-
ing clustering of Kv1.4 channels in heterologous cells95. 
Multimerization of PSD-95 occurs through two cysteine 
residues, Cys3 and Cys5, in its N-terminus96, possibly 
involving either disulphide bridging of these cysteines 
or their palmitoylation93,94,96–99. PSD-95 colocalizes with 
Kv1.2 in presynaptic terminals in the cerebellum94 and 

Figure 4 | Voltage-gated potassium Kv1 channels. Tetrameric channels are shown as four ovals, in which one oval 
represents each subunit. Each subunit has an N- and a C-terminus; however, for simplicity, only one N- and one 
C- terminus are shown here. Proteins and motifs that are involved in the targeting, trafficking, and retention of voltage-
gated potassium Kv1 channels are shown. The interaction between the T1 tetramerization domain in the N-terminus of 
the channel with Kvβ is necessary for axonal targeting. An extreme C-terminal PDZ binding motif (consensus sequence 
indicated) that binds postsynaptic density protein-95 (PSD-95) might be important for the clustering and possibly 
anchoring of these channels. Multimerization of PSD-95 might occur through two cysteine residues (C) in its N-terminus 
that either form a disulphide bridge to another PSD-95 molecule or are palmitoylated. Various motifs regulate the surface 
expression of Kv1 channels: an endoplasmic reticulum (ER) retention motif in the pore region, an ER export motif in Kv1.4 
(VXXSL), and an endocytic motif (YXXφ). Phosphorylation of a tyrosine (-OH, *) in this endocytic motif can regulate binding 
to cortactin, a filamentous (F)-actin-binding protein that binds Arp2/3, which nucleates actin polymerization. An EA1 
missense mutation causes a truncation of the C-terminus leading to intracellular aggregation of the channel. Kv1 channels 
are associated with a complex of contactin-associated protein-2 (CASPR2), transient axonal glycoprotein (TAG 1), and 
4.1B at the juxtaparanodal regions of myelinated axons that might have a role in clustering. CASPR2 might associate with 
Kv1 channels through an unidentified PDZ domain-containing protein. At the level of the ER, the ER chaperone, calnexin, 
promotes forward trafficking while synapse-associated protein-97 (SAP97), a membrane-associated guanylate kinase 
(MAGUK), inhibits trafficking through binding the same PDZ binding motif as PSD-95. Interacting proteins are in green 
and sequence motifs or mutations are in red. EA, episodic ataxia type 1; EGF, epidermal growth factor, Ig, immunoglobulin.
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seems to be necessary, but not sufficient, for the axonal 
targeting of Kv1.4 in transfected slices of rat cortex100. 
PSD-95 interactions might also be involved in channel 
anchoring, as discussed in other reviews49,50,101. 

However, although PSD-95 is found colocalized 
with Kv1 channels at the juxtaparanodal regions, 
it might not be responsible for the clustering of Kv1 
channels. This is because these channels were still cor-
rectly clustered, and associated with CASPR2 at the 
juxtaparanodal regions of the optic nerve in mutant 
mice that expressed a truncated form of PSD-95 (REF. 

102). Interestingly, Kv1.2 and CASPR2 remain clustered 
in these mutant mice, despite the inability to detect 
any known MAGUK at the juxtaparanodal region, 
which suggests that clustering is independent of these 
scaffolding proteins102. Both CASPR2 and Kv1.2 have 
C-terminal PDZ motifs that might interact with an 
as-yet-unidentified PDZ-containing protein49,79,102. 
Further studies, possibly using a complete or condi-
tional PSD-95 knockout mouse, might address its role 
at the juxtaparanodes more clearly.

KCNQ channels. The Kv7 (KCNQ) channels are slow 
delayed rectifiers that activate at sub-threshold levels to 
maintain the resting potential and reduce excitability2. 
KCNQ2 is localized to the AIS and nodes of Ranvier 
in the CNS and PNS and is colocalized with KCNQ3 
at only some of these locations2. KCNQ2/3 channels 
underlie the M-current (IM), which is activated at sub-
threshold potentials and modulated by G-proteins2,103. 
Mutations in these channels cause myokymia and 
benign familial neonatal convulsions (BFNCs)104,105, 
underscoring their importance in controlling excit-
ability. Moreover, electrophysiological studies show 
that KCNQ channels in premyelinated fibres of the 
optic nerve control excitability, a role similar to that of 
Kv1 channels at the nodes of the sciatic nerve during 
development2,5,31 (BOX 1).

KCNQ2 channels, which contain an ankyrin G-
binding motif similar to the one found in the II–III 
linker of Nav channels, colocalize with ankyrin G and 
Nav channels at the AIS and nodes of Ranvier2. KCNQ2 
and Nav channels also share a similar developmental 
pattern in myelin deficient rats, suggesting similar spatial 
and temporal regulation for their targeting and cluster-
ing2,61,106. The targeting of KCNQ2/3 and Nav to the AIS 
is affected in ankyrin G-knockout mice, reinforcing the 
idea that both Nav and KCNQ2/3 rely on ankyrin G for 
their clustering107. It is important to note that, whereas 
Nav channels and KCNQ channels both localize to the 
AIS and nodes of Ranvier due to their interactions with 
ankyrin G, these channels also localize to other axonal 
compartments, particularly in unmyelinated axons, by 
mechanisms that are likely to involve other axonal target-
ing signals108. In addition to the ankyrin G-binding motif, 
other sequences in the KCNQ2 C-terminal domain have 
been implicated in its surface expression in unmyelinated 
hippocampal axons beyond the AIS108. 
Kv3 channels. There are four Kv3 genes, Kv3.1 to Kv3.4, 
which have multiple splice forms. Kv3.1 and Kv3.2 
display delayed rectifier currents, whereas Kv3.3 and 

Kv3.4 give rise to A-type currents. Typically found in fast-
spiking central neurons, Kv3 channels might comprise 
different combinations of Kv3-family members, and are 
important for action potential repolarization and sus-
taining high-frequency firing34,35. Little is known about 
the targeting of Kv3 channels, for which various subtypes 
are found distributed throughout the neuron. Kv3.1b is 
found at some of the nodes of Ranvier in the CNS, but 
not at the AIS109. It interacts with ankyrin G; however, 
the Kv3 channel does not appear to be responsible for the 
4-AP-sensitive current that is detected in the mouse optic 
nerve. Kv3.1/Kv3.2 channels at the nerve terminals of 
fast-spiking interneurons in the cortex and parallel fibres 
in the cerebellum might regulate action potential dura-
tion, and hence transmitter release110,111. Kv3 channels 
have also been found in the soma and dendrites of CNS 
neurons and the mechanisms involved in their targeting 
to somatodendritic regions are discussed below.

Targeting voltage-gated ion channels to dendrites
The presence of voltage-gated sodium, calcium and 
potassium channels on dendritic membranes30,112–118 
helps control the back-propagation of action potentials 
into dendrites, local action potentials and the spread of 
synaptic potentials (FIG. 1). Several types of Kv channels 
might regulate excitability and contribute to neuronal 
signalling processing in dendrites119. Besides voltage-
gated ion channels that activate on depolarization, HCN 
channels are present with an interesting steep density 
gradient along the dendrite120–122 (FIG. 1) and might be up- 
or down-regulated by synaptic plasticity123,124. By altering 
the resting potential and the input resistance27,125, these 
channels regulate dendritic excitability126,127, the size and 
time course of synaptic potentials128–130, and therefore the 
extent of temporal summation and dendritic integration 
of synaptic inputs123,131. In addition, Kv and HCN chan-
nel properties and densities might also be regulated by 
neuronal activity6,128,132–135. 

The targeting of dendritic channels might occur by 
directed targeting, as with axonal channels; however, it 
remains possible that the dendritic localization of some 
ion channels involves selective endocytosis or transcyto-
sis. Work has been focused on the relationship between  
the distribution of dendritic channels and neuronal 
activity and proteins localized or interacting with the 
channels.

Hyperpolarization-activated cyclic nucleotide-gated 
channels. HCN1 resides primarily in the neocortex, hip-
pocampus and cerebellum, while HCN3 and HCN4 are 
concentrated in subcortical regions120. HCN2 is widely 
distributed in the brain and accounts for the HCN cur-
rent in thalamic relay neurons. HCN2-null mice display 
absence seizures, probably due to action potential bursts 
and oscillatory activities in their thalamocortical neu-
rons136. The physiological importance of HCN channels 
in controlling neuronal excitability is further underscored 
by the finding that HCN channel expression is altered fol-
lowing seizures in humans and in animal models137–139.

HCN1 and HCN2 colocalize in the distal den-
drites of cortical and hippocampal pyramidal 
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neurons120, and HCN1 and HCN2 expressed in 
Xenopus laevis oocytes seem to form heteromeric 
channels with properties similar to the native 
Ih in hippocampal CA1 pyramidal neurons140. 
Indeed, HCN currents in the hippocampal neurons of 
HCN2-null mice are reduced in size, and show char-
acteristics of homomeric HCN1 channels136. HCN1–
HCN2 heteromeric channel formation in hippocampal 
and cortical neurons is supported by their co-immu-
noprecipitation, and HCN1–HCN2 co-assembly can be 
enhanced by developmental seizures139. Both the N- and 
C-terminal domains of HCN1 and HCN2 seem to be 
involved in subunit interactions141–143, and the C-termi-
nal cyclic nucleotide-binding domain (CNBD) appears 
to be necessary for channel exit from the ER141,144. A 
summary of protein interactions and motifs can be 
found in FIG. 5.

Pyramidal neurons have a steep gradient of HCN 
current density, as measured by cell-attached patch- 
clamp along the dendrite125,131,140,145. This has the effect 
of maintaining temporal resolution in the synaptic 
potentials121,131,140,145. This uneven HCN current distribu-
tion probably results from a steep increase of HCN1 and 

HCN2 proteins in apical dendrites of hippocampal and 
cortical neurons114,115,120,121. It will be interesting to see 
whether immunostaining of HCN1 and HCN2 will cor-
relate with this increasing HCN current density towards 
the distal dendrites.

HCN channels are important for regulating the den-
dritic integration of synaptic potentials146. While HCN1-
null mice have serious motor, learning and memory 
defects147, a forebrain-restricted knockout of HCN1 
actually increases hippocampal-dependent learning 
and memory, and LTP146. These intriguing findings have 
stimulated investigations into HCN channel trafficking 
and the search for scaffold proteins that might anchor 
HCN channels in the dendrites.

The MinK-related protein MiRP1 (also known as 
voltage-gated potassium channel protein KCNE1) 
assembles with several Kv channel-α subunits, and also 
forms a complex with HCN2 to modulate HCN2 chan-
nel gating kinetics in cardiac ventricular myocytes148. 
MiRP1 overexpression causes enhancement of HCN2 
current density148. Whether the gradient of HCN chan-
nel density along the dendrites of pyramidal neurons 
involves an uneven distribution of MiRP1 is not yet 
known. 

The C-terminal domains of HCN family members 
interact with a number of scaffold proteins149–151. HCN1–
4 interact with the tetratricopeptide repeat (TPR)-
containing Rab8b-interacting protein (TRIP8b) through a 
tripeptide motif in the C-terminus149. TRIP8b colocalizes 
with HCN1 on the apical dendrites of cortical layer V 
pyramidal neurons, but loses its apical dendrite locali-
zation in HCN1-null mutant mice, whereas its apical 
dendritic distribution in hippocampal CA1 neurons is 
not dependent on HCN1 expression149. Expression of 
TRIP8b in cultured hippocampal neurons and other cell 
types causes reduction of HCN channel surface expres-
sion, probably by promoting channel internalization149. 
So, modulation of HCN channel density could conceiv-
ably involve the regulation of TRIP8b interactions with 
the channel.

HCN1 is the only member of the HCN family that 
interacts with filamin A, a putative scaffold protein that 
binds actin150. Filamin A causes HCN1 channel clustering 
and reduces HCN current density in a filamin-deficient 
human malignant melanoma cell line, or this same cell 
line stably expressing filamin150, but how this interaction 
might affect HCN channel distribution along dendrites 
is uncertain.

HCN2, but not other HCN family members, inter-
acts with tamalin (also known as GRP1-associated 
scaffold protein), mostly through a PDZ-like-bind-
ing domain at the C-terminus151. In addition, HCN2 
associates with other scaffold proteins, such as synaptic 
scaffolding molecule (S-SCAM) and MINT2 through 
various regions of its C-terminus151. In COS7 cells, 
HCN2 protein levels are increased by its interaction 
with MINT2, the Caenorhabditis elegans homologue 
of which (LIN-10) has been implicated in targeting 
glutamate receptors to postsynaptic sites151. How these 
scaffold proteins contribute to the HCN channel distri-
bution in CNS neurons awaits future studies.

Figure 5 | Hyperpolarization-activated cyclic 
nucleotide-gated channels. The tetrameric channel is 
shown as four ovals, in which one oval represents each 
subunit; only one N- and one C- terminus are shown. 
Proteins and motifs involved in the trafficking and/or 
retention of hyperpolarization-activated cyclic nucleotide-
gated (HCN) channels are shown. minK-related peptide-1 
(MiRP1) interacts with the transmembrane segments of 
HCN channels. The cyclic nucleotide-binding domain 
(CNBD) is involved in promoting exit from the ER. 
Tetratricopeptide repeat (TPR)-containing Rab8b-
interacting protein (TRIP8b), which contains six 
tetratricopeptide repeats that are involved in protein–
protein interactions, interacts with the extreme C-terminal 
tripeptide motif. HCN1 channels contain a sequence in the 
C-terminus that interacts with filamin A and connects it to 
the actin cytoskeleton. The scaffold proteins tamalin and 
MINT2 interact with the region that is the C-terminal of the 
CNBD in HCN2, and synaptic scaffolding molecule 
(S-SCAM) interacts with the C-terminal region including 
the CNBD. Interactions are indicated by arrows.
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Kv2 channels. Kv2.1 channels underlying the somato-
dendritic delayed rectifier current IK  form large clusters152,153 
in a process that is dependent on channel phosphoryla-
tion154–156. Neurotransmitters and neuronal stress trigger 
dephosphorylation of Kv2.1 in a calcineurin-dependent 
manner, which disperses Kv2.1 clusters and changes the 
channel-gating properties154. A novel proximal restric-
tion and clustering sequence (PRC) in the C-terminus 
of Kv2.1 seems to be necessary and sufficient for cluster-
ing157. Because these channels open and close slowly, they 
reduce repetitive spiking and could contribute to homeo-
static plasticity154,158. A summary of protein interactions 
and motifs is shown in FIG. 6.

Kv3 channels. Kv3 channels are located to somato-
dendritic regions as well as axons. For example, in the 
weakly electric fish Apteronotus leptorhynchus, Kv3.1 is 
located in the soma and proximal dendrites of the elec-
trosensory lateral line lobe (ELL), and Kv3.3 is located 
throughout the dendrites. The targeting  of Kv3.3 to the 
distal dendrite is dependent on the AptKv3.3 C-terminus 
containing a putative PDZ-interaction domain177. In the 
mammalian nervous system, Kv3.3 and Kv3.4 reside on 
the dendrites of Purkinje cells, where they cause damp-
ening of back-propagation from the soma178. However, 
Kv3.1 and Kv3.2 reside in the soma and dendrites of 
retinal starburst amacrine cells, with Kv3.1b forming a 
gradient that culminates at high levels in proximal den-
drites — a distribution that could account for the prefer-
ence for centrifugal signal flow along electrically isolated 
dendrites that are responsible for a direction-selective 
response to moving objects179,180. In the avian auditory 
nervous system, which is specialized for time coding, 
there is a developmental shift from the Kv3.1a to the 
Kv3.1b splice variant with different subcellular expression 
patterns, resulting in dendritic-channel proteins forming 
a gradient along the tonotopic axis in the brainstem181.

Kv4 channels. In contrast to the restriction of Kv2.1 
to proximal dendrites and the soma, Kv4.2 and the 
β-subunits KChIP2 and KChIP4 are concentrated in 

more distal regions of pyramidal neurons, whereas 
Kv4.3 and KChIP1 reside on somatodendritic regions of 
interneurons of the hippocampus and cortex159 (FIG. 1). 
KChIPs bind to the N-terminus of Kv4 channels, 
thereby reconstituting the native A-type currents23,25,160 
that control the shape of action potential waveforms, 
repetitive spiking, and back-propagation161–163. Neurons 
that express a dominant-negative Kv4.2 construct also 
have a reduced threshold, not only for action potentials, 
but also for dendritically initiated plateau potentials, 
thereby causing these regenerative events to spread to 
neighbouring dendritic branches and to trigger action 
potentials162,163. The finding that Kv4.2 is localized near 
synapses117,118,164 is intriguing, given that the dendritic 
targeting of Kv4.2 in cerebellar granule neurons requires 
glutamate receptor activation165. Localizing Kv channels 
near the synapse might allow neurons to mould their 
intrinsic excitability in the vicinity of active synapses; 
for example, NMDA (N-methyl-d-aspartate) receptor 
activation through synaptic inputs to hippo campal 
CA1 neurons causes a local increase of dendritic excit-
ability, because of modulation of A-type Kv channels 
that probably contain Kv4.2 (REF. 166).

In cerebellar sections and hippocampal cultured neu-
rons, Kv4.2 colocalizes with the actin-binding protein 
filamin near synapses167. Filamin A and C interact with 
the C-terminus of Kv4.2, and four amino acids (PTPP) 
in the Kv4.2 C-terminus were found to be crucial for 
its interaction with filamin C. A di-leucine-containing 
motif of 16 amino acids that is found in the C-terminal 
domain of Kv4 channels mediates dendritic targeting 
in cultured slices of cortical neurons168. The di-leucine 
motif does not appear to affect the rate of endocytosis in 
COS7 cells, and another portion of the Kv4.2 C-termi-
nal domain mediates Kv4.2 association with the KIF17 
kinesin, which has been implicated in the transport of 
Kv4.2 to dendrites169. A summary of protein interactions 
and motifs is shown in FIG. 7.

Neuronal Kv4 channels probably contain not only 
the β-subunit KChIP159,160, but also CD26-related 
dipeptidyl aminopeptidase-like proteins such as DPPX 
and DPP10 (REFS 26,170–173). Both types of β-subunit 
facilitate Kv4 channel trafficking172,174–176. Interestingly, 
the myristoylated KChIP1 requires calcium binding to 
promote Kv4.2 forward trafficking, apparently involv-
ing novel post-ER transport compartments176. When 
expressed in cultured hippocampal neurons, KChIP1 is 
closely associated with Golgi in the soma as well as Golgi 
outposts along the dendrites176. It remains to be deter-
mined whether these trafficking regulators contribute 
to dendritic Kv4 targeting and modulation.

The distribution of Cav channels
Studies on Cav channels have delineated the localization 
of specific channel types. Cav channels are expressed in 
the neuronal soma, dendrites and nerve terminals. Cav1 
channels are mainly found in cardiac tissue; however, 
some isoforms are found in the proximal dendrites and 
soma of neurons182. Cav2.1, Cav2.2 and Cav2.3 channels 
are found in presynaptic terminals, dendrites and somas 
where they are involved in controlling neurotransmitter 

Figure 6 | Voltage-gated potassium Kv2.1 channels. Tetrameric channels are shown 
as four ovals, in which one oval represents each subunit; only one N- and one C- terminus 
are shown. Proteins and motifs involved in the clustering of the Kv2.1 channel are shown. 
Dephosphorylation of Kv2.1 channels by a calcineurin-dependent pathway leads to the 
dispersal of Kv2.1 clusters in proximal dendrites. A proximal restriction and clustering 
sequence (PRC) motif in the C-terminus is necessary for clustering. 
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release and also contribute to the induction of LTP at 
mossy fibre synapses29,183–185. In addition, Cav2.3 chan-
nels are found in the dendritic spines of CA1 neurons 
and contribute to synaptic plasticity186. Some Cav3 iso-
forms are localized to dendrites and influence thalamic 
bursting29. Interestingly, a gradient of Cav channels 
occurs along the dendrite with a higher density located 
in the soma and proximal dendrites that might have 
implications for the integration of electrical and calcium 
signalling114,187. 

Recent studies have begun to identify the compon-
ents and signalling pathways for the regulation of 
Cav-channel movement. An ER retention signal in the 
domain I–II loop (α-interaction domain) of the Cav2.1 
α-subunit might be masked by β-subunit binding, 
thereby allowing forward trafficking out of the ER188. 
The interaction between the α-interaction domain 
and Cavβ1b or Cavβ2a is essential for the ability of 
these Cavβ-subunits to promote Cav channel surface 
expression189, and this could be sufficiently mediated 
by the SH3–guanylate-kinase domains in Cavβ190. 
Further regulation of Cav-channel trafficking might 
involve the phosphatidylinositol 3-kinase–Akt/protein 
kinase B (PKB) pathway, and the phosphorylation of 
serine 574 of Cavβ2a191. Other cytoplasmic domains 
of Cav2.1 might also harbour trafficking motifs for ER 
retention192. In addition, the protein kinase A (PKA) 
anchoring protein AKAP79 regulates surface expres-
sion of Cav1 channels independently of PKA, in an 
interaction that involves a polyproline sequence within 
the domain II–III loop193.

 Finally, trafficking of Cavα1 channels depends on 
the metal-ion-dependent adhesion site (MIDAS) of the 
extracellular Von Willebrand factor-A (VWA) domain of 
the α2δ-subunit. Mutation of this presumed Mg2+-bind-
ing motif does not affect the trafficking of the α2δ-sub-
unit when it is expressed alone, but it suppresses surface 
expression of the α2δ-subunit and Cavα1 resulting in 
their co-localization within the cell. This suggests that the 
conformation of these two subunits in a complex is monit-
ored in the regulation of their forward trafficking194.

Future perspectives
Proper neuronal signalling depends crucially on the 
placement of appropriate ion channels at strategic loca-
tions on the dendrites or axons. For example, precise 
sound localization requires the low-threshold Kv1 chan-
nels to keep the excitatory synaptic potentials brief, with 
little or no chance for temporal summation, whereas 
the high-threshold Kv3 channels have the essential role 
of enabling fast spiking195. The remarkable molecular 
diversity of voltage-gated ion channels has been suitably 
exploited to endow neurons with the intricate, finely 
grained mosaic patterns of these ion channels that under-
lie neuronal excitability and signalling. This review is by 
no means comprehensive, leaving out considerations of 
voltage-gated chloride (ClC) channels and antiporters196, 
for example, which might function in intracellular mem-
branous compartments as well as the cell membrane197. 
Ultimately, for these and many other channel types, we 
would like to understand how the subcellular compart-
mentalization of channels underlies the electrophysio-
logical activities that are necessary for signal processing 
and computation in various neuronal circuits. 

Molecular and cellular biological studies have begun to 
explore potential axon-targeting mechanisms and 
to approach the intriguing question of the spatial and 
temporal control of channel density along the dendrites. 
These pioneering studies will surely be followed with 
more mechanistic analyses of the targeting machiner-
ies, their interactions with the polarized cytoskeleton 
and their regulation by neuronal activity. A summary 
of sequence motifs that have been identified in recent 
studies is shown in TABLE 1. Interestingly, endocytic 
elimination from dendritic membranes acts in a con-
certed manner, with retention at the AIS for Nav channel 
localization66,68, and similar retention through ankyrin G 
possibly also accounting for the KCNQ channel locali-
zation to the AIS107. It is also intriguing that axonal 
channels seem to be bound to the actin cytoskeleton 
through βIV spectrin while dendritic channels seem to 
use filamin as the adaptor protein. Future studies will 
probably further highlight such recurrent themes and 
elucidate their possible significance.

At this time, global mechanisms for channel target-
ing remain elusive. A mechanism of selective endocytosis 
that has been proposed for Nav channels is the closest evi-
dence so far that gives any mechanistic insight. By neces-
sity, the initial investigations identify trafficking motifs 
and potential interacting proteins; their involvement in 
ion channel trafficking and targeting probably varies with 
developmental stages and experience, and depends on 

Figure 7 | Voltage-gated potassium Kv4.2 channels. 
The tetrameric channel is shown as four ovals, in which one 
oval represents each subunit; only one N- and one 
C- terminus are shown. Proteins and motifs involved in the 
trafficking and targeting of the Kv4.2 channel are shown. 
DPPX and DPP10 interact with the transmembrane 
segments of Kv4.2. KChIPs interact with the N-terminus 
including the T1 tetramerization domain. KChIP1 is 
myristoylated and involved in the forward trafficking of 
Kv4.2 channels. A filamin-binding region in the C-terminus 
connects Kv4.2 channels to the actin cytoskeleton. 
A di-leucine motif in the C-terminus mediates dendritic 
targeting. The last 30 amino acids of Kv4.2 are implicated in  
kinesin-family member-17 (KIF17) association.
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the potentially dynamic arrangement of microdomains 
within a neuron. So, the molecular characterization of 
possible neuronal components is only one of the crucial 
early steps towards understanding how different neurons 
transport various ion channels to the proper locations for 
their physiological functions. It will be important to test 
their roles in channel trafficking and targeting in different 
neuronal types — not an easy task given the possibility 
of functional redundancy and mutual dependence of 
proteins of macromolecular complexes.

The current shortage of knowledge is the motivation 
for intensive work in this field. There are many important 
questions to be addressed. What are the cell-biological 
mechanisms of channel targeting to polarized regions of 
the neuron? How might this be differentially modulated 
in various neuronal cell types? And what are the impli-
cations for electrical signalling and neurotransmitter 
release?  These questions are difficult to answer due to 
the heterogeneity of channel subtypes, localization and 
neuronal cell types. Key technical challenges include 
how to distinguish directed targeting from pan-targeting 
and selective retention or endocytosis, how to determine 
whether a molecule initiates clustering or merely binds 

as a scaffold once the channels are correctly targeted, and 
how all the various motifs coordinate their activities to 
determine the final location of a channel. Careful experi-
ments combining genetic, molecular, cellular and elec-
trophysiological techniques will be needed to advance 
this field — for example, live single-cell microscopy to 
track channel targeting, coupled with electrophysiologi-
cal recordings to assess functional channel density, as 
well as studies involving conditional knockout mice for 
more precise temporal control of gene activity.

Notwithstanding the technical challenges, it will 
be exciting to learn from future studies how ion 
channels that control neuronal excitability are posi-
tioned in a such a way as to enable the integration of 
synaptic inputs that are confined to individual den-
dritic branches, to regulate the extent of spatial and 
temporal summation of synaptic inputs, to control 
the extent of dendritic action potential initiation and 
back-propagation of action potentials that are initi-
ated at the AIS, to dictate the waveform and firing 
pattern of action potentials, and to control the extent 
of action potential invasion of axonal branches and 
nerve terminals.

Table 1 |  Summary of the motifs involved in trafficking, targeting and clustering of voltage-gated ion channels

Channel Localization Motif Location Motif Motif Description References

Nav Axons II–III linker n/d Preferential somatodendritic endocytosis 68

II–III linker (V/A)P(I/L)AXXE(S/D)D Ankyrin G-binding motif/AIS clustering motif 65,66

C-terminus Di-leucine Axonal localization and preferential somatodendritic 
endocytosis (Nav1.2 only)

69

Kv1 Axons C-terminus n/a Kv1.1 EA1 missense mutation, C-terminal truncation 
causes intracellular aggregation

90

C-terminus YXXφ Endocytic motif in Kv1.2 regulates surface expression 80

C-terminus VXXSL ER export motif (Kv1.4 only) 87

Extreme C-terminus X(S/T)XV-COOH PDZ binding motif, channel retention and clustering 
at the membrane

93,94

T1 n/d Axonal targeting 80,81

Pore region n/d ER retention 89

KCNQ Axons C-terminus (I/L)AXGE(S/T)DX(E/D) Ankyrin G-binding motif 2,107

Cav2.1 Dendrites I–II linker n/d ER retention signal in AID 188

HCN Dendrites Extreme C-terminus Tripeptide motif TRIP8b binding reduces surface expression 149

C-terminus: CNBD n/d ER exit signal

C-terminus: 
after CNBD

n/d Filamin A-binding motif (HCN1 only); cytoskeletal 
interactions

150

C-terminus: 
after CNBD

n/d Tamalin  and MINT2  interaction sites (HCN2 only); 
scaffold interactions

151

C-terminus: 
including CNBD

n/d S-SCAM interaction site (HCN2 only); scaffold 
interactions

151

Kv2.1 Dendrites C-terminus PRC motif Clustering motif at proximal dendrites 157

C-terminus n/d Phosphorylation-dependent clustering 154,155

Kv4.2 Dendrites C-terminus Di-leucine Dendritic targeting 168

C-terminus PTPP for filamin C Filamin-binding region; cytoskeletal interactions 167

Extreme C-terminus n/d KIF17 association, transport to dendrites 169

AID, α-interaction domain; AIS, axon initial segment; Cav, voltage-gated calcium channel; CNBD, cyclic nucleotide-binding domain; ER, endoplasmic reticulum; 
HCN, hyperpolarization-activated cyclic nucleotide-gated cation channel; KCNQ, Kv7; KIF17, kinesin family member-17; Kv, voltage-gated potassium channel; n/a, 
not applicable; Nav, voltage-gated sodium channel; n/d, not determined; PDZ, PSD-95, Drosophila disks large protein, ZO-1;  PRC, proximal restriction and 
clustering sequence; S-SCAM, synaptic scaffolding molecule; TRIP8B, tetratricopeptide (TPR)-containing Rab8b-interacting protein.
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