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Review
Glial cells and neurons are engaged in a continuous and
highly regulated bidirectional dialog. A remarkable ex-
ample is the control of myelination. Oligodendrocytes in
the central nervous system (CNS) and Schwann cells
(SCs) in the peripheral nervous system (PNS) wrap their
plasma membranes around axons to organize myelinat-
ed nerve fibers that allow rapid saltatory conduction.
The functionality of this system is critical, as revealed by
numerous neurological diseases that result from dereg-
ulation of the system, including multiple sclerosis and
peripheral neuropathies. In this review we focus on PNS
myelination and present a conceptual framework that
integrates crucial signaling mechanisms with basic SC
biology. We will highlight signaling hubs and overarch-
ing molecular mechanisms, including genetic, epigenet-
ic, and post-translational controls, which together
regulate the interplay between SCs and axons, extracel-
lular signals, and the transcriptional network.

Introduction
Axon myelination is essential to attain rapid saltatory
impulse conduction in the vertebrate nervous system.
The remarkable multi-layered myelin sheath structure
is achieved by wrapping of the plasma membrane of spe-
cialized glial cells, oligodendrocytes in the CNS and SCs in
the PNS, around large-caliber axons. This precise arrange-
ment and its integrity are essential, as emphasized by
frequent neurological diseases caused by malformation
or deterioration of the myelin sheath, including multiple
sclerosis, leukodystrophies and peripheral neuropathies.
The appearance of myelin was also a major step forward in
vertebrate evolution. Plausibly, emergence of the neural
crest, a stem cell population giving rise to jaws and most of
the PNS including SCs, arose together with myelination,
allowing superior predatory and escape behaviors and the
efficient construction of large body sizes [1].

The continuous bidirectional dialog between axons and
glial cells is fundamental for myelin formation during
development, myelin maintenance, remyelination after
injury, and in understanding disease etiology. In disease,
axon damage is almost invariably observed after myelin
damage, suggesting disturbed glia–axon signaling [2].
Many basic mechanisms about the functional roles of
glia–axon interactions have been elucidated in the PNS,
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largely due to the relative anatomical simplicity of periph-
eral nerves and the consequential experimental opportu-
nities. Although there are significant molecular differences
compared to the CNS [3], understanding PNS myelination,
in addition to being valuable in its own right and with
respect to peripheral nerve diseases [4], will continue to
provide important conceptual insights into CNS myelina-
tion in health and disease.

In early PNS development, axonal signals are critical for
SC migration, survival and proliferation to ensure that SC
and axon numbers are matched. Furthermore, axons reg-
ulate SC differentiation into myelinating and non-myeli-
nating populations [5]. Reciprocally, SCs provide crucial
trophic support for developing neurons and profoundly
influence axonal properties, especially through myelina-
tion. SC-derived signals guide the sequential assembly of
multi-protein complexes, including cell adhesion mole-
cules, ion channels, and scaffolding proteins, into distinct
domains at and in the vicinity of the node of Ranvier, a
requirement for efficient saltatory impulse propagation [6].
Myelinating SCs also regulate the axon cytoskeleton, or-
ganelle content, and rates of axonal transport, all of which
are vulnerable in demyelinating diseases.

In this review we will highlight signaling pathways
emerging from the axon, the extracellular matrix (ECM),
and other extracellular cues that guide PNS myelination.
We will focus on molecular mechanisms that integrate
signals received by SCs with genetic and epigenetic regu-
lation, together controlling the formation, maintenance
and repair of myelinating SC–axon units. Our discussion
will be concentrated on the key question: how are myelin
formation, maintenance, demyelination, and remyelina-
tion controlled? Related issues, including the formation
and structure of nodes of Ranvier and the role of glia in
eliciting disease and modulating its progression, have been
reviewed elsewhere [2,3,6–8].

Myelinating SCs in development and repair
SCs originate from neural crest-derived SC precursors,
although this embryonic cell type is not yet fully committed
to the SC lineage and also gives rise to melanocytes [9].
Directed by the key regulator neuregulin-1 (NRG1), which
is involved in nearly all aspects of SC biology [10], precur-
sor cells develop into immature SCs with a basal lamina,
acquire an autocrine survival loop, and surround axon
bundles [5]. Next, immature SCs extend processes inside
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Figure 1. Transcriptional and epigenetic regulation of PNS myelination. (a) During late embryonic development and shortly after birth, peripheral nerves are organized in

SC–axon families with immature SCs surrounding axon bundles. Subsequently, in a procedure known as radial axonal sorting, SCs extend processes into the bundles,

selecting and extracting single axons of large diameters (approx. >1 mm in the adult mouse) to achieve a one-to-one SC–axon relationship termed the pro-myelinating

stage. The small axons left behind remain engulfed by a SC but will not be myelinated and form Remak bundles. The main known positive transcriptional regulators of

myelination are indicated (purple cylinders). At the heart of the process, Sox10 activates Oct6, and Sox10 and Oct6 together induce Krox20, the main regulator of the

ensuing myelination program [14]. Brn2 (Brain-2) is also involved in the regulation of the timing and rate of the pro-myelinating to myelinating transition, with Krox20 as a

major target. In addition, Sox10 and Krox20 are required for the maintenance of the myelinated SC state [12,16]. In agreement with the crucial role of these transcription

factors, specific Krox20 and Sox10 mutations cause demyelinating diseases in human [13]. In general, myelination inhibitors (white and yellow cylinders) individually play

mainly minor roles in regulating developmental myelination because they are typically under the control of the positive regulators. Upon nerve injury, however, the

negative regulators direct SC demyelination. Notch and c-Jun definitively control SC de-differentiation, and Sox2, Id4 and Id2 are suspected to play a similar role [12]. After

regrowth of peripheral axons, SCs activate a remyelination program that is similar but not an exact match to developmental myelination. Demyelination and incomplete

remyelination are also key features in demyelinating peripheral neuropathies. However, current knowledge remains fragmentary about which components and controls are
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the bundles to select large caliber axons in a finely tuned
multistep process termed radial sorting [11]. This results
in individual pro-myelinating SC–axon units, promptly
activating a molecular program to generate myelin
sheaths. Radial sorting is the decisive step towards a
myelinating SC phenotype. We will therefore focus our
review on the events from this stage onwards (Figure 1a).

Despite the remarkable differentiation process of mye-
lination, myelinating SCs are highly plastic. After losing
axonal contact in injured nerves, SCs dedifferentiate to an
immature SC-like stage, proliferate, and serve as favorable
substrate for axon regrowth, followed by remyelination
[12]. Similarly, demyelination accompanied by incomplete
remyelination occurs in hereditary and acquired peripher-
al neuropathies [4,13]. It is a current research challenge to
differentiate between common regulatory mechanisms and
the specific mechanisms that control myelination, demye-
lination and remyelination in the different settings of
nerve development, injury and disease.

Transcriptional and epigenetic control of PNS
myelination
SC myelination is under strict transcriptional control [14].
This involves a hierarchy of positive transcription factors,
with a central axis that includes Sox10 (SRY-related HMG-
box-10) activating Oct6 (octamer-binding transcription
factor-6). In a feed-forward loop, Sox10 and Oct6 synergis-
tically induce the expression of Krox20/Egr2 (early growth
response-2) [15]. Krox20 takes center stage by activating
numerous myelin genes, suppressing myelination inhibi-
tors, and maintaining the myelinated state [12]. Consis-
tent with its crucial role in this regulatory circuit, Sox10 is
required for SC progression to myelination and myelin
maintenance [16,17]. Other transcriptional regulators im-
plicated in myelination include NFATc4 (nuclear factor of
activated T-cells, cytoplasmic, calcineurin-dependent-4)
that associates with Sox10 to activate the Krox20 and
P0 (protein-zero) genes [18]. The latter encodes the most
abundant PNS myelin protein that is required for myelin
lamellae compaction and stability [19]. In addition, the
transcription factor Yy1 (Yin yang-1) regulates Krox20
expression and is required for myelination [20]. Further-
more, NRG1 type III (NRG1-III)-mediated activation of the
transcription factor NF-kB (nuclear factor of k light poly-
peptide gene enhancer in B cells) in SCs appears to be
crucial for myelination [21,22]. In agreement with these
findings, deacetylation of NF-kB by the histone deacety-
lases HDAC1 and HDAC2 promotes activation of the Sox10
gene and regulates SC myelination [23]. Another study
reported that Sox10 recruits both HDAC1 and HDAC2 to
regulatory regions of the Sox10 and Krox20 loci [24]
(Figure 1b). However, only HDAC2, in synergy with
Sox10, activates the transcriptional program of myelina-
tion, consistent with attenuated myelination in young
heterozygous SC-specific HDAC2-deficient mice. SCs defi-
shared between developmental myelination and demyelination/remyelination after inju

myelination. In SCs, HDAC1 and HDAC2 bind to Sox10 and promote the myelination pro

level-dependent manner, and both proteins promote deacetylation of NF-kB, which is im

the transition of pro-myelinating to myelinating SCs (and to a minor extent for radial

promoting cell cycle exit [35–37]. Furthermore, axonal integrity is dependent on SC-expr

the dosage-sensitive hereditary neuropathy-causing PMP22 [38].
cient in both HDAC1 and HDAC2 cannot myelinate, con-
firming essential roles of these and probably other histone
code regulators in PNS myelination [23–25].

The sterol regulatory element-binding proteins
(SREBPs) have also been implicated in transcriptional
regulation of myelination [26]. SC-specific deletion of
SCAP (SREBP cleavage-activating protein), an activator
of SREBPs, causes loss of SREBP-mediated gene expres-
sion involved in cholesterol and fatty acid synthesis, ac-
companied by altered myelin synthesis. Related to these
findings, mutant mice lacking SC cholesterol biosynthesis
show severe hypomyelination with uncompacted myelin
stretches, attributed to disturbed cholesterol-mediated co-
ordination of myelin membrane synthesis and deficient P0
export from the endoplasmic reticulum [27]. Reduced
expression of genes involved in cholesterol biosynthesis
is also characteristic of animal models of PMP22 (periph-
eral myelin protein-22)-based inherited peripheral neurop-
athies with affected myelin sheaths [28], highlighting
further the significance of coordinated myelin protein
and lipid biosynthesis regulation in health and disease.
Mice with SC-specific ablation of Lpin1 support also a
crucial role of lipid homeostasis in myelinating SCs [29].
Lpin1 encodes phosphatidate phosphatase (PAP1), re-
quired for triacylglycerol biosynthesis. In Lpin1-deficient
SCs, accumulation of the PAP1 substrate phosphatidic
acid mediates demyelination and aberrant SC prolifera-
tion, probably due to abnormal activation of the MEK
(mitogen-activated protein kinase kinase)–Erk (extracel-
lular-signal regulated kinase) pathway after myelination
initiation.

In addition to transcriptional regulators promoting SC
myelination, negative regulators have also emerged, in-
cluding the NAB (NGFI-A/Egr-binding) corepressors.
NABs interact with Krox20 and are required for coordi-
nating myelin formation [30]. Krox20 and NAB2 associate
with Id2 (inhibitor of DNA binding-2), Id4, and Rad (Ras
associated with diabetes) promoters when those genes are
repressed during the myelination process [31]. Another
class of myelination inhibitors is generally inactive in
myelinating cells and promotes SC dedifferentiation fol-
lowing injury [12]. The transcription factor AP-1 compo-
nent c-Jun fits these criteria [32]. Furthermore, analysis of
Notch receptor signaling in SCs, regulated by axonal
ligands causing proteolytic release of the active transcrip-
tional regulator Notch intracellular domain (NICD),
revealed that this pathway also negatively controls mye-
lination [33]. This includes driving demyelination after
injury and inducing rapid demyelination in uninjured
nerves if ectopically activated. Other candidate transcrip-
tion factors for negative regulators of myelination include
Sox2, Id2 and Id4 [14,34].

Understanding active regulation of demyelination is
important in at least two major ways: First, such regula-
tors foster axon regrowth after injury by promoting a
ry and in disease. (b) HDACs and miRNAs are major epigenetic regulators of PNS

cess via Sox10 and Krox20. HDAC1 and HDAC2 can compensate for each other in a

portant for NF-kB-driven myelination via Sox10 [23,24]. SC miRNAs are required for

 axonal sorting), partly by contributing to silencing of myelination inhibitors and

essed miRNAs [35]. In vitro studies showed that miRNA 29a regulates expression of

125



Review Trends in Neurosciences February 2012, Vol. 35, No. 2
favorable environment. This involves trans-differentiation
of previously myelinating SCs to cells supporting nerve
repair, potentially revealing novel targets to improve this
clinically important process. Second, such pathways might
become inappropriately activated or modulated in diseased
SCs in demyelinating neuropathies. This knowledge may
also provide the basis for novel therapeutic strategies [34].
The available information about PNS myelination inhibi-
tors is incomplete, however, in particular with regard to
their significance in developmental myelination compared
to demyelination and remyelination after injury and in
disease.

Micro RNAs (miRNAs) are post-transcriptional regula-
tors with crucial roles in PNS myelination. SC-specific
deletion of Dicer in mice disrupts the regulatory
miRNA network causing differentiation arrest at the
pro-myelinating stage [35–37], closely resembling congen-
ital hypomyelination diseases. Mutant nerves show also
mild impairments of radial sorting [35] and increased SC
proliferation and apoptosis in late postnatal development
[37]. Importantly, compromised axonal integrity indicates
that SC miRNAs also regulate gene expression required for
axon health, and this is mediated by SC–axon interactions
[35]. At the molecular level, myelination inhibitors were
increased in SC-Dicer mutants, whereas drivers of myeli-
nation were reduced [35–37]. Thus, miRNAs may suppress
myelination inhibitors and shift the balance in favor of
positive regulators, a model consistent with the modest
silencing effects of miRNA-138 on c-Jun, Sox2 and
CyclinD1 expression in cell culture [36].

Regulation of myelin protein expression in myelination
requires exquisite control. This is well manifested by
Charcot–Marie–Tooth disease (CMT) type 1A, the most
frequent form of inherited peripheral neuropathies, and
hereditary neuropathy with liability to pressure palsy
(HNPP). Both are caused by genetic alterations leading
to either PMP22 over- (CMT1A) or under-expression
(HNPP) [13]. PMP22 is targeted by miRNA-mediated reg-
ulation [38] and patients with autoimmunity against
GW182, a miRNA pathway key component, are often
affected by motor and sensory neuropathies [39]. Thus,
studying miRNA regulation and its therapeutical potential
may also benefit research in peripheral neuropathies.

Control of myelination by principles of cell polarization
Transcriptional regulation of myelination is well studied,
but understanding the cell biology of myelination and its
associated signaling pathways remains a challenge. This is
partly due to the unique features required to guide the
formation of multilayered plasma membrane stacks and to
establish and maintain a highly compartmentalized struc-
ture, a prerequisite for proper signaling in myelinating SCs
(Figure 2). Integration of the continuous dialog with the
underlying axon and growth factor- and ECM-derived
signaling adds further layers of complexity. The concept
of cell polarization, in analogy to epithelial cells, has been
useful in this context [40,41]. Myelinating SCs are highly
polarized, morphologically and molecularly, both longitu-
dinally from node to node and radially from the axon to the
SC basal lamina. Applying the conceptual polarization
framework allows testing of whether and how basic prin-
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ciples and molecular players known from polarized epithe-
lia also regulate myelinating SCs. Furthermore,
activation, coordination and organization of signaling
pathways can be related to the particular qualitative
and quantitative protein and lipid compositions of SC
membranes in different domains at the various develop-
mental, demyelinating and remyelinating stages. The ma-
jor intrinsic regulatory complexes in polarized epithelia
are Dlg1 (discs, large homolog 1)/scribbled/Lgl (lethal giant
larvae) localizing to the basolateral domain, Pals1 (protein
associated with lin seven-1)/Patj (PALS1-associated tight
junction protein)/crumbs found in the apical domain, and
aPKC (atypical protein kinase C)/Par3 (partitioning defec-
tive-3)/Par6 associated with adherens and/or tight junc-
tions [42]. Several of these proteins are expressed and
distinctly localized in myelinating SCs [41,43–45]. Epithe-
lial basolateral regulators are enriched in the abaxonal
domain and apical regulators in the adaxonal domain and
Schmidt–Lanterman incisures. This distribution indicates
that myelinating SC polarity along the radial axes shares
molecular resemblance with epithelial cells and suggests
related basic regulatory mechanisms.

Functional testing revealed that Pals1 is essential for
radial and longitudinal extension of the myelin sheath and
for proper regulation of membrane protein trafficking [43].
Furthermore, reduction of Pals1 disrupted the correct
polarized localization of the vesicular markers Sec8 and
Syntaxin4, in line with functional roles of polarized vesic-
ular sorting in myelinating SCs.

Par3 is asymmetrically localized at the axon–SC junc-
tion at the initiation of myelination [44], and this distinct
localization, together with the associated p75NTR (neuro-
trophin receptor), is crucial to start myelination (these
results also relate to the modulatory role of neurotrophins
in SC myelination, as reviewed elsewhere [46]) (Figure 3).
N-cadherin was suspected to mediate SC polarity by
recruiting Par3, by analogy to epithelia, because both
proteins colocalize at the SC–axon interface when myeli-
nation is initiated [45]. However, SC-specific ablation
revealed that N-cadherin is not absolutely required for
the initiation of myelination or for myelin maturation,
although there was a minor delay in the onset of myelina-
tion. Because b-catenin coimmunoprecipitated with N-cad-
herin, myelination was also assessed in mice lacking SC-
expressed b-catenin. A more severe delay in myelination
was observed. Thus, N-cadherin may interact with b-cate-
nin to establish SC polarity and the proper timing of
myelination, but both proteins are not essential for the
formation and maturation of myelin [45]. However, further
clarification of the functional roles of Wnt/b-catenin sig-
naling and its interplay with other signaling pathways in
PNS myelination is required. Wnt/b-catenin signaling has
been described as positive driver of PNS myelination
[24,47], and disruption of downstream b-catenin signaling
in zebrafish leads to hypomyelination and reduced myelin
compaction [47]. By contrast, continuous SC-specific ex-
pression of activated b-catenin in transgenic mice does not
affect myelination at postnatal day 15 [23].

A function of Dlg1 in myelination was initially suggested
by its binding to MTMR2 (myotubularin-related protein-2).
MTMR2 is mutated in CMT4B1 that is characterized by
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Figure 2. Polarized structure of the adult myelinating SC. Myelinating SCs cover a segment of the axon, designated the internode, and organize their subcellular domains in

a polarized fashion, both in the longitudinal and radial axes. Longitudinally, SCs display the nucleus at the center. At the edge of the internode, cytoplasm-filled SC

paranodal loops tether the internode to the axon and define the juxtaparanodal region (JXT). SC microvilli project into the nodal area. Radial polarity of SCs is also striking,

with the nucleus being localized in the outermost wrap of the myelin sheath (abaxonal domain), followed by compact myelin and the innermost wrap facing the axon

(adaxonal domain). Cytoplasm-filled spiral-shaped channels, Schmidt–Lantermann (SL) incisures, connect the adaxonal and abaxonal cytoplasm. The abaxonal domain is

in tight contact with the basal lamina, a thin layer of highly organized ECM components synthesized by SCs, whereas the adaxonal domain is in close contact with the

axolemma. This radial polarity organization shows similarities to epithelial cell polarization with an apical and a basolateral domain. Adult myelinating SCs show

distributions of intrinsic polarity-regulatory proteins similar to those of epithelial cells, with Dlg1 being enriched in the abaxonal domain (basolateral-like), Pals1

concentrated in the adaxonal domain, SL incisures and paranodal loops (apical-like), and Par3 being localized to adherens junctions in outer regions of paranodal loops and

SL incisures (between both domains). The asymmetric distribution of polarity proteins is coupled to a polar distribution of phosphoinositides. In mature myelinating SCs,

PIP2 is enriched in the adaxonal domain and PIP3 is concentrated at the abaxonal domain. These enriched distributions of polarity proteins and PIPs relate to adult

myelinating SCs. Note that when SC polarity is established and further enhanced during the myelination process, localization of these proteins and lipids is dynamic with

different effects on signaling, as exemplified by Par3 recruitment to the SC–axon interphase at myelination initiation (Figure 3).
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redundant myelin outfoldings [48,49]. SC-specific expres-
sion knockdown revealed that Dlg1 acts as a brake on
myelination to achieve correct myelin thickness proportion-
al to axon calibers [50]. These findings are consistent with
previous suggestions that Dlg1, in concert with MTMR2,
Sec8 and the kinesin Kif13b, may regulate vesicular trans-
port and titrate membrane formation during SC myelina-
tion [49]. Thus, subtle endosomal trafficking defects might
lead to accumulating problems if MTMR2 is absent, culmi-
nating in CMT4B. The importance of endocytic pathways in
SC myelination has been emphasized by the identification of
the probable disease mechanism in demyelinating CMT4C.
Here, the mutated SH3TC2 (SH3 domain and tetratricopep-
tide repeats-2) protein is mistargeted away from the recy-
cling endosome [51,52]. SH3TC2 is strongly enriched in
myelinating SCs and acts as an effector of the small GTPase
Rab11. Rab11 is a key regulator of recycling endosome
functions and is required for SC myelination [52]. Neuropa-
thy-causing SH3TC2 mutations disrupt the Rab11 interac-
tion, probably affecting recycling of cargos essential for SC
myelination.

Regulation of myelination by neuregulin
NRG1, in particular the axonal membrane-bound form
NRG1-III, is a key regulator of PNS myelination by
activating ErbB2–ErbB3 (erythroblastic leukemia viral
oncogene homolog-2/3) receptor complexes in SCs [10].
A threshold amount of axonal NRG1-III triggers SC
myelination [53], and NRG1-III also controls myelin growth
to match myelin thickness to axon caliber [54]. Activation of
PI3K (phosphatidylinositol 3-kinase)/PIP3 [phosphatidyli-
nositol (3,4,5)-trisphosphate]/AKT (v-Akt murine thymoma
viral oncogene homolog) signaling is a major pathway in-
volved in these processes [53]. PI3K catalyzes the formation
of PIP3 from PIP2 [phosphatidylinositol (4,5)-bisphosphate]
to foster AKT activation, whereas PTEN (phosphatase and
tensin homolog) mediates the opposite reaction. In myeli-
nating SCs, PTEN reduction causes increased levels of PIP3
and hypermyelination [55]. Conversely, silencing of AKT
leads to hypomyelination [50]. Activated AKT may act via
SREBPs to promote cholesterol biosynthesis which itself is
crucial for myelination [56]. Interestingly, the NRG1 signal-
ing program that drives myelination is also involved in
stopping the process [50]. During active myelination,
NRG1 prevents Dlg1 and PTEN ubiquitination and degra-
dation, which leads to more Dlg1–PTEN complexes. Conse-
quently, accumulating active PTEN reduces AKT activity to
terminate myelination. Taken together, the interplay be-
tween NRG1, PTEN, and AKT, together with functionally
important regulatory accessory proteins including Dlg1, is a
127
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Figure 3. SC-intrinsic polarization mechanisms involved in myelination. Multiple

pathways that contain SC-intrinsic polarization regulators and their crucial

influence on different steps of myelination are shown. A dotted line from AKT

signaling to the induction of SREBPs indicates that this connection is likely, but has

not been firmly established in myelination. The local action of WNT/b-catenin

signaling on SCs remains to be determined, as do the details of polarized

regulation of vesicular trafficking by Sec8, Kif13B, and the Dlg1/MTMR2/MTMR13

complex mediated by the SC microtubule network. The association of MTMR13

with this complex is speculative but likely. MTMR2 or MTMR13 mutations lead to

clinically and pathologically indistinguishable forms of demyelinating CMT, and

MTMR2 and MTMR13 can also form complexes with regulatory effects [48]. The

endosomal recycling regulator Rab11 interacts with the CMT culprit protein

SH3TC2, indicating that endosomal recycling is crucial for myelination. This

mechanism may affect signaling, or could contribute to regulating the addition of

fresh components to the myelin sheath and the recycling of old myelin

components by directing them to appropriate degradation pathways.
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major regulatory component of PNS myelination. It appears
likely that this signaling pathway contributes also to the
disease etiology of peripheral neuropathies characterized by
hypermyelination and hypomyelination [13].
128
A second major pathway elicited by NGR1 in SCs trig-
gers increased intracellular Ca2+, mediated by PLC-g
(phospholipase C-g), and is coupled to calcineurin activa-
tion (Figure 4). This process induces dephosphorylation
and nuclear translocation of NFATc4, complex formation
with Sox10, and activation of the Krox20 and P0 genes [18].
The MEK pathway is the third signaling trail activated by
NRG1. MEK-dependent Yy1 phosphorylation is crucial for
Krox20 induction and myelination [20]. Furthermore, SC
cell-specific gene ablation revealed that Erk1/2 are also
required for myelination, possibly depending on NRG1
signaling [57]. Reduced Erk1/2 phosphorylation, associat-
ed with hypomyelination, was also found in SC-specific
tyrosine phosphatase SHP2 (Ptpn11; protein tyrosine
phosphatase non-receptor type-11)-deficient mice [58], con-
sistent with a critical role of the MEK/Erk signaling cas-
cade in NRG1/SHP2-regulated myelination.

In contrast to developmental myelination, juxtacrine
NRG1 signaling is not required for myelin maintenance
[59–61]. However, axonal NRG1 is essential for remyelina-
tion after injury, axon regeneration, and correct reinner-
vation of the neuromuscular junction [61].

Post-translational regulation of myelination by
secretases
Regulated proteolysis critically regulates PNS myelina-
tion. This involves the b-secretase BACE1 [62,63] and
the a-secretase TACE/ADAM17 (a disintegrin and metal-
lopeptidase domain-17) [64]. Both cleave NRG1-III at
closely spaced sites but have opposite effects on myelina-
tion [64,65]. While BACE1 is a positive regulator of mye-
lination [62,63] and remyelination [65], TACE negatively
regulates myelination by modulating the amount of func-
tional NRG1-III on axons [64]. It appears that balancing
BACE1 and TACE activities is crucial in determining the
timing and degree of PNS myelination, and is most likely
mediated by PI3K/AKT signaling. Nardilysin (NRD1), a
metalloendopeptidase enhancer of protein ectodomain
shedding, has also been linked to NRG1 cleavage and is
a positive regulator of myelination [66]. How this might
relate to the regulation of TACE, BACE1, or other protease
activities remains open. Understanding regulation of se-
cretion and processing of different NRG1 isoforms, and
how the generated local concentrations of different func-
tional ligands affect myelination, is of continued interest.
In SC–neuron cocultures, low quantities of soluble NRG1-
III and NRG1-II enhance myelination, whereas high
amounts promote SC proliferation [67]. Given these results
and the hypomyelination associated with BACE1- and
NRD1-deficiencies, paracrine NRG1 signaling remains to
be considered in myelination, in addition to the well-estab-
lished juxtaparacrine effects.

Other ADAM family members are involved in regulat-
ing myelination in addition to ADAM17/TACE. Develop-
mental myelination is normal in ADAM19-deficient mice,
but there is a delay in remyelination, accompanied by
reduced AKT phosphorylation and reduced expression of
Krox20 and myelin-related proteins [68]. Mice lacking the
catalytically-inactive ADAM22 display PNS hypomyelina-
tion [69], most probably due to receptor functions for the
SC-secreted Lgi-4 protein (leucine-rich repeat LGI family
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secretases (members of the ADAM family and BACE1) are present at the axon surface and regulate SC myelination. ADAM17/TACE and BACE1 probably act by regulating

NRG1-III signaling via proteolytic processing (wavy red lines), albeit with different effects on myelination. ADAM17/TACE and BACE1 are both shown on the axonal surface,

but these proteins are also present in different subcellular compartments where they may already cleave their substrate(s). GPR126 is involved in SC–axon interactions, but
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general note, we depict here (and in Figures 3,5) the signaling events along the internode. Little is known about the individual contributions of spatially and temporally

controlled signaling at distinct locations within the SC–axon interface. To complicate matters, these are likely to differ during the different stages of myelination, starting

with radial sorting and progressing to homeostasis of the myelinated peripheral nerve. Although it is generally believed that SC paranodal loops are a signaling hotspot, all

cytoplasmic regions and the regulated network of their connections within the polarized and compartmentalized SC have to be considered.

Review Trends in Neurosciences February 2012, Vol. 35, No. 2
member-4) [70]. Lgi-4 is required for PNS myelination as
initially revealed by the hypomyelinated spontaneous Lgi-
4 mouse mutant claw paw [71].

Regulation of myelination by interactions and signaling
at the SC–axon interface
In addition to NRG1, other membrane-associated proteins
are enriched at the SC–axon interface with impacts on
myelination. SC-expressed Necl-4 (nectin-like protein-4)
interacts with axonal Necl-1 to promote myelination
[72,73]. The relevance of this interaction has been ques-
tioned because mice devoid of Necl-1 have no PNS myeli-
nation defect [74]. However, compensation effects may
explain this result, as is often observed within the large
family of related cell-adhesion proteins.

The SC-expressed myelin-associated glycoprotein MAG
is required for maintenance of myelin, and MAG-deficient
mice show a propensity for axon degeneration [75]. Depen-
dence of axonal integrity on intact myelin sheaths is well
known, but whether myelin maintenance relies on axons is
less obvious. Surprisingly, axonal expression of the prion
protein PrPc, but not SC-expressed PrPc, is required for
preservation of the adult myelin sheath [76]. This concep-
tually important finding suggests that adult-onset demye-
linating neuropathies might also originate on the axonal
side. Thus, elucidating PrPc binding partners that mediate
this protective effect will be instrumental for understand-
ing the myelinating SC–axon unit in health and disease.

GPR126 is a G protein-coupled receptor required for
initiation of myelination autonomously in SCs [77,78].
Several G protein-coupled receptors induce production of
cAMP, a well-known regulator of SC differentiation that, at
least in cell culture, switches NRG1 from a proliferative
signal to a myelin differentiation signal [79]. Only if used
129
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together, cAMP and NRG1 upregulate myelin markers.
Treatment with forskolin, an inducer of cAMP production,
rescued the myelination defect in GPR126-mutant zebra-
fish, suggesting that GPR126 functions upstream in the
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ECM signals regulating myelination
SCs lay down a basal lamina as a crucial prerequisite
for myelination. ECM contact, mediated by specific recep-
tors, allows SCs to integrate signaling by growth and
differentiation factors with cytoskeleton dynamics and
to modulate the strength of matrix attachments. This
interplay is pivotal throughout myelination and in myelin
maintenance. Laminins are crucial for radial axonal sort-
ing, acting through and being dependent on the b1 integ-
rin subunit and dystroglycan receptors in distinct
sequential steps [11,80–82]. At later stages, internodal
and nodal organizations depend on SC-expressed dystro-
glycan [83]. Defects in dystroglycan-deficient mice include
abnormal myelin sheath folding, disorganized microvilli,
and reduced sodium channel density. Disrupted cyto-
plasmic compartmentalization of myelinating SCs is a
prominent contributing feature [84]. In different SC com-
partments, dystroglycan acts as an anchor for specific
proteins required for myelin stability, including DRP2
(dystrophin related protein-2) and the dysmyelinating
CMT4F culprit periaxin [85], which are localized in appo-
sition between the myelin and basal lamina [86]. Cleavage
by matrix metalloproteinases 2 and 9 modulates the mo-
lecular composition of these complexes and the size of
myelinating SC domains [86]. In parallel to myelination,
the SC laminin receptor integrin a6-b4 is upregulated by
axonal signals and localizes at the abaxonal surface of
myelinating SCs, opposite to the basal lamina [87]. SC-
deficiency of a6-b4 integrin leads to abnormal myelin
sheath folding in aged mice [88], indicating that this
integrin receptor pair plays a crucial role in myelin sta-
bility, partly in cooperation with dystroglycan. Interest-
ingly, integrin a6-b4 binds to the demyelinating disease-
causing PMP22, possibly contributing to the underlying
disease mechanism [89]. Consistent with the pivotal role
of laminins in PNS myelination, SCs lacking all laminins
due to deficiency in the g1-subunit display a discontinuous
basal lamina and radial sorting is blocked [90]. Important-
ly, these experiments indicated crucial crosstalk between
laminin and PI3K signaling. Collagens are also involved
in myelination [91]. Collagen XV-deficient mice show a
mild peripheral nerve maturation defect and augment
laminin4a-deficiency effects, causing permanent blocks
in radial sorting compared to a delay in single laminin4a

mutants.

Signaling and the SC cytoskeleton
Myelination is a complex mechanical process that depends
on rearrangements of the actin cytoskeleton coupled to
cross-regulatory synergistic growth factor- and ECM-me-
diated signaling. Inhibition of actin polymerization [92] or
of myosin II activity, a key regulator of actin cytoskeleton
dynamics [93], impairs myelination in SC–neuron cocul-
tures (Figure 5). Furthermore, sub-membranous cytoskel-
etal spectrins act as myelination modulators by linking
signals from axons to the SC actin cytoskeleton, probably
mediated by polarized Necl-4 enrichment at the SC–axon
interface and F-actin stimulation [94]. F-actin rearrange-
ment is also regulated by small RhoGTPases [95]. Cdc42
(cell division cycle-42) acts downstream of NRG1 and
stimulates SC proliferation crucial for radial sorting
[96]. Mutations affecting Frabin/FGD4, an activator of
Cdc42, lead to demyelinating CMT4H [97], consistent with
an additional functional role of Cdc42 in later myelination
stages [98]. Rac1 (Ras-related C3 botulinum substrate-1)
mediates b1 integrin signaling and promotes SC process
extension and radial lamellae formation essential for radi-
al sorting [96,99]. During Wallerian degeneration, Rac1
regulates F-actin polymerization and myelin degradation
[100]. Downstream of Cdc42, Wiskott–Aldrich syndrome
protein (N-WASP) controls F-actin nucleation and branch-
ing. Coherent with this notion, SC-expressed N-WASP is
required for lamellipodia formation, membrane wrapping,
and proper myelination [101,102].

Signaling from integrins and neuregulins can activate
RhoGTPases [98], a crucial process for SC myelination, but
the molecules that relay the signals in-between are largely
unknown. The ILK (integrin-linked kinase)–PINCH (par-
ticularly interesting new cystidine-histidine-rich protein)–
parvin (IPP) complex forms a hub that physically and
functionally bridges growth factor and integrin signals
with the actin cytoskeleton, including the regulation of
small RhoGTPases [103]. In PNS myelination, ILK nega-
tively regulates Rho kinase (ROCK) to foster SC process
extension and to trigger radial axonal sorting, consistent
with impaired radial sorting in SC-specific ILK-deficient
mice, a phenotype that is ameliorated by ROCK inhibition
[104]. ILK is also required for the transition from promye-
linating to the myelinating SC phenotype during remyeli-
nation, including correct AKT activation, but not for
myelin maintenance.

Concluding remarks
We are witnessing exciting progress in PNS myelination
research. Genetics has been instrumental in gathering
physiologically-relevant data, and an increasing number
of studies are investigating molecular aspects of myelin
maintenance and SC dedifferentiation and redifferentia-
tion. Further advances will come from comparing the les-
sons learned from development to the complex processes
taking place after injury, including through the study of
demyelination/remyelination paradigms that avoid acute
damage to axons, as well as assessments of inflammatory
and non-inflammatory neuropathy disease models. New
fields have emerged that explore overarching regulatory
mechanisms such as proteolytic modifiers that probably
affect multiple targets, similar to epigenetic mechanisms
including histone code regulators and regulatory miRNAs.
Recent studies have also revealed how SC mitochondrial
metabolism is important for peripheral nerve function and
axonal survival [105], and how SC polarity, metabolism, and
myelination regulation may be intimately linked [106], and
thus deserve further attention. Conceptually, SC polarity
with its multiple facets, including the regulation of specific
local membranes and signaling complex accumulation and
activation, remains a fruitful basis for working hypotheses.
This relates further to early SC development, demyelination
and remyelination, which all share morphological resem-
blance with mesenchymal–epithelial and epithelial–mesen-
chymal transitions. Furthermore, the long-standing
question of how the myelin sheath is mechanistically gen-
erated still awaits satisfactory answers, as does a thorough
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Box 1. Outstanding questions

� What are the similarities and differences between the molecular

mechanisms that direct developmental PNS myelination, myelin

maintenance, demyelination and remyelination in health and

disease? – (note that use of the term ‘myelination’ within the

following points of the text box refers to all of these different

settings). To what extent are these control mechanisms modu-

lated by axon damage and inflammatory components after injury

and in disease?

� What is the role of non-myelinating SCs (in Remak bundles) in

myelination?

� What is the influence of endoneurial fibroblasts in myelination?

� How is the actual myelination process (e.g. membrane wrapping,

myelin compaction, and construction of myelin compartments)

mechanistically achieved?

� What are the relative physiological contributions of inhibitory

mechanisms versus activators in myelination?

� To what extent, and involving which molecular players, does

electrical activity regulate myelination [109]?

� How are metabolic processes regulating essential SC–axon

interactions [8,105] and what is their relevance for myelination?

� How is polarized (and locally-restricted) protein targeting and

secretion achieved, and what are the consequences of such

polarization for signaling and myelination?

� What is the spatiotemporal distribution of signaling molecules

(membrane-bound and soluble) within the highly compartmenta-

lized myelinating SC, and how is this regulated?

� What is the turnover of individual lipids and proteins within

myelinating SCs? How is this process regulated?

� How are different signals integrated by SCs to orchestrate the

myelination program? Much is known about the basic receptors

and signaling cascades that are involved, however, the relative

contributions and crosstalk between individual pathways at given

time-points remain to be clarified.

� To what extent is regulated proteolysis involved in the control of

myelination? Which proteases and targets are involved?

� How are lipid and myelin protein synthesis molecularly coordi-

nated?

� What is the level of control on myelination by epigenetic

mechanisms?

� How important are local concentrations of the various membrane-

bound and non-membrane-bound isoforms of NRG1 in the

regulation of SC biology and myelination? How is secretion and

processing of different NRG1 isoforms regulated?
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understanding of mechanisms that are responsible for the
maintenance of this structure (Box 1). By extension, eluci-
dating all myelin components [107] and understanding how
they are added to myelin membranes through development
and in nerve homeostasis remains a challenge, as does,
conversely, how old myelin proteins and lipids are shuttled
away from myelin through appropriate degradation path-
ways. It is anticipated that a refined understanding of the
molecular basis of myelination will aid in the development of
novel treatment strategies for debilitating disorders that
involve deregulation of myelination, such as neuropathies in
the PNS and multiple sclerosis in the CNS.
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