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Recent advances in our (patho)physiological understanding have underpinned the frequent

involvement of the protein family of selectins in the progression of serious illnesses, including cancer

and cancer metastasis, and immunological diseases, such as asthma, allergy and autoimmune reactions.

Moreover, selectins seem to have a role in post-ischemic damage and during transplant failures (e.g. in

graft-versus-host disease). Although the interplay between selectins and their counter-receptors and

ligands is not always primarily involved in the development of these pathological conditions, selectins

have been investigated as potential therapeutic targets for therapeutic intervention. This review focuses

on the latest trends and developments in anti-selectin antibodies, anti-selectin receptor antibodies,

recombinant selectin counter-receptors, low molecular weight selectin antagonists (glycomimetics),

induction of selectin tolerance and selectin-targeted imaging agents.
Introduction to selectins
The selectin family features calcium-dependent type-I

transmembrane glycoproteins with extracellular lectin-like

domains that interact, for example, with sialylated carbohydrate

determinants and mucin-like glycoproteins. In mammals, three

structurally similar family members have been identified: E(ndothe-

lium)-selectin, L(eukocyte)-selectin and P(latelet)-selectin

(Figure 1). Common to all selectins is the mediation of initial

tethering of circulating blood cells with endothelial cells of the

intima or among each other [1]. Structural details of selectins and

their expression profiles have been previously reviewed [1,2]; hence,

only a brief description will be provided here.

Nature has developed an efficient mechanism to deliver immune

cells to the siteof inflammation or injury.Becausecirculatingcells in

the blood stream are subjected to high shear stresses, the emigration

of leukocytes from the circulation requires a sophisticated and

coordinated interplay controlled by multiple signalling and adhe-

sion molecules, among which are selectins [1,3].

Inhibition of these interactions, which disrupts the recruitment

cascade and consequently decreases the number of leukocytes in
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the tissues, might therefore result in alleviation of diseases caused

by undesired immunological reaction (e.g. allergy, psoriasis, mul-

tiple sclerosis, inflammatory bowel diseases or rheumatoid arthri-

tis) [4]. Furthermore, in cancer, the interaction of malignant cells

with the endothelium and platelets is similar, thus selectins also

have a key role in the development of metastasises [5].

E-selectin – role in (patho)physiology
E-selectin (CD62E, ELAM-1, LECAM-2) is specifically synthe-

sized by endothelial cells. It is not constitutively present, but

transcriptionally regulated by several transcription factors such

as tumour necrosis factor a (TNFa), interleukin (IL)-1, nuclear

factor kB (NF-kB) and activator protein 1 (AP-1) [6,7]. Once

expressed on the cell surface, E-selectin is slowly internalized

and directed to lysosomes for degradation [8]. A circulating form

of E-selectin (soluble E-selectin or sE-selectin) might be released

by enzymatic cleavage or result from shedding of damaged or

activated endothelial cells. The concentration of sE-selectin

appears to correlate with its expression on the surface of

endothelial cells [9]. Therefore, plasma sE-selectin concentra-

tion might be a marker of endothelial cell damage or activation.

E-selectin is involved in cardiovascular disease [10] and

elevated levels of E-selectin and sE-selectin have been reported
ee front matter � 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.drudis.2006.09.004
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FIGURE 1

The extracellular N-terminus carrying the lectin-like domain is followed by an EGF-like domain and various numbers of consensus repeat (CR) domains. The

selectins are anchored in the membrane by a single transmembrane domain and contain a small cytoplasmatic tail. The major structural difference between the

three selectin types lies in the number of CR domains. In humans, P-selectin is the longest member of the family with nine CRs, E-selectin has six, and L-selectin

contains only two CRs.
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in Kawasaki disease, bronchial asthma, Guillain-Barre syndrome

and Graves’ disease [4,11].

L-selectin – role in (patho)physiology
L-Selectin (CD62L, LAM-1, LECAM-1) is expressed in peripheral

blood leukocytes and involved in leukocyte trafficking in the

systemic microcirculation [12]. A broad range of activating agents,

including granulocyte/macrophage-colony stimulating factor

(GM-CSF), interferon-a, and IL-8, have been reported for L-selec-

tin, strongly depending on cell type [13]. In addition to transcrip-

tional regulation, there is indication of activation through

adrenalin (via b-adrenoceptors) or shear stress [13]. The soluble

form of L-selectin (sL-selectin) is functionally active and inhibits

leukocyte attachment to endothelium at high concentrations [14].

Protein kinase C, as well as tyrosine phosphorylation and depho-

sphorylation, is associated with an increase in sL-selectin [15].

Increased expression levels of L- selectin and sL-selectin have been

identified in several diseases, among them allergy, HIV infections,

insulin-dependent diabetes mellitus, meningeal leukaemia, multi-

ple sclerosis and sepsis [11].

P-selectin – role in (patho)physiology
P-selectin (CD62P, LECAM-3) was originally purified from platelets

and later found to be expressed also in endothelial cells. In both

cell types, P-selectin is constitutively expressed and stored in

secretory granules – a-granules in platelets and Weibel-Palade

bodies in endothelial cells [16]. Upon stimulation (e.g. by hista-

mine or thrombin) these secretory granules fuse with the plasma

membrane, causing rapid surface expression. IL-4, IL-13, and

oncostatin M all increase P-selectin mRNA synthesis and protein

production in human endothelial cells [17,18]. By contrast, TNFa,

lipopolysaccharide (LPS) and IL-1 do not increase P-selectin mRNA

synthesis, probably because of the lack of a NF-kB binding site in

the human P-selectin promoter [19]. It should be noted that the

murine P-selectin promoter does contain a NF-kB binding site, and

P-selectin expression is regulated by mediators such as TNFa and

LPS in murine cells [19]. Once expressed on the surface of endothe-

lial cells, P-selectin is rapidly internalized by endocytosis [20]. The
physiological role of P-selectin is to work in concert with E-selectin

in the mediation of initial leukocyte adhesion to activated

endothelium during acute inflammation [21]. Expression of P-

selectin on platelet surfaces stimulates recruitment of leukocytes

to platelet aggregates, formation of platelet–leukocyte aggregates

and has an important role in vascular haemostasis, atherosclerosis

and inflammatory leukocyte extravasation [22].

A soluble form of P-selectin, which might represent a proteolytic

fragment or a soluble splice variant lacking the transmembrane

domain, is found in serum and plasma [23]. High expression of P-

selectin or sP-selectin has been implicated in several inflammatory

disorders, including adult respiratory distress syndrome, acute

lung injury, ischemia-reperfusion injury, Gram-negative septic

shock, thrombotic diseases, malaria, systemic sclerosis, connective

tissue disease and rheumatoid arthritis. Furthermore, lung injury

scores correlate significantly with sP-selectin in plasma of patients

with acute lung injury [4,11].

Selectin ligands and counter-receptors
Selectin-binding structures with high affinity include primarily

oligosaccharide and sulfopolysaccharide ligands that usually also

represent the binding epitope of physiological selectin counter-

receptors, including glycoproteins and glycolipids. P-selectin

glycoprotein ligand-1 (PSGL-1, CD162) is a mucin-like transmem-

brane protein which forms homodimers by linking two 120 kDa

chains via disulfide bridges (Table 1). PSGL-1 is a well-character-

ized receptor for selectins. It is expressed primarily on myeloid,

lymphoid and dendritic cells, and can bind all three selectins, but

with different binding strengths and association kinetics [24].

Sulfation of tyrosine residues and O-glycosylation in the mature

NH2-terminal region of PSGL-1 appear necessary for the high

affinity of PSGL-1 to P-selectin, and the binding is regulated by

different degrees and forms of glycosylation [25]. In vitro inhibi-

tion of PSGL-1 completely eliminates neutrophil rolling on

P-selectin, consistent with the finding that genetic deletion

of PSGL-1 attenuates P-selectin-mediated rolling of leukocytes

in vivo [26]. The metastatic potential of cancer cells has

been reported to correlate with their surface expression of
www.drugdiscoverytoday.com 1035
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TABLE 1

Selectin counter-receptor interaction parameters [34]

Selectin Ligand KD [mM] IC50 [mM]

P-selectin
PSGL 1 (human) 0.2–0.32

rPSGL-IgG 0.06

sLex 7800 520–1300
6-sulfo-sLex 220

E-selectin
ESL-1(mouse) 56–62
recombinant ESL-1 66

sLex 100–2000 100–750

L-selectin
GlyCAM1 (mouse) 108

sLex 3900 2300

6-sulfo-sLex 800
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PSGL-1 [27]. Cleavage of the protein from the cell surface is one

mechanism involved in the deactivation process, when a soluble

form of PSGL-1 is detectable in the circulation. sPSGL-1 is still

capable of binding to P-selectin, thus representing a competitor

for cellular PSGL-1 [28].

The small O-linked oligosaccharide-modified glycoprotein

CD24 was identified as a ligand of P-selectin. CD24 is mainly

expressed on neutrophils. In the absence of PSGL-1, CD24 can

mediate the rolling on P-selectin [29].

Two major glycoprotein receptors for E-selectin have been

identified, the E-selectin ligand-1 (ESL-1) [30] and PSGL-1 [24].
FIGURE 2

Interactions between selectins (blue) and their counter-receptors (red) mediate te
carry N-glycosylated P- and E- selectin glycoprotein ligands (PSGL-1, ESL-1), which in

E-selectin). In absence of PSGL-1, binding of O-glycosylated CD24 to P-selectin m

present on leukocytes and mediate interaction with the endothelium via glycosyla

molecule 1), whereas GlyCAM-1 (glycosylation-dependent cell adhesion molecule 1
initial tethering of the leukocyte to the endothelium, which is followed by firm a
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ESL-1 is a 150 kDa type-1 protein with a glutamine-rich

NH2-terminal segment of 70 amino acids followed by 16

cysteine-rich repeats, a transmembrane domain and a short cyto-

plasmic tail [31]. ESL-1 is expressed in leukocytes and binds speci-

fically to E-selectin but not to P-selectin. However, there is currently

no in vivo proof that ESL-1 is involved in E-selectin-mediated

leukocyte tethering.

L-selectin binds to the sulfated sialyl-Lewis x (6-sulfo-sLex)

epitopes present on O-glycans of various glycoproteins in high

endothelial venules (HEV) [32]. Four L-selectin ligands have been

identified in HEV of peripheral lymph nodes: three sulphated L-

selectin ligands, Sgp50 (glycosylation-dependent cell adhesion

molecule-1, GlyCAM-1), Sgp90 (CD34) and Sgp200, and the muco-

sal vascular addressin cell adhesion molecule-1 (MAdCAM-1)

(Figure 2). The glycoprotein ligand GlyCAM-1 is secreted and

might primarily transduce signals into leukocytes rather than

support leukocyte adhesion [33]. Sgp90 is expressed on the surface

of endothelial cells, whereas the third ligand, Sgp200, is both

secreted and cell associated. Sgp90 and Sgp200 have been sug-

gested to mediate the initial loose binding of lymphocytes to HEV

[34]. MAdCAM-1 supports lymphocyte tethering and rolling

through interactions with both L-selectin and a4b7 integrin

[35]. An interaction of L-selectin with PSGL-1 in the process of

neutrophil aggregation has also been shown.

Pharmacological selectin targeting
Being crucial for the initial cell–cell interaction between platelets,

leukocytes and the endothelium, the binding of selectin ligands
thering of leukocytes to activated endothelial cells. Activated leukocytes can
teract with selectins expressed on activated endothelium (PSGL-1 with P- and

ight be important. The lymphocyte homing receptor L-selectin can also be

ted PSGL-1, CD34 and MadCAM-1 (mucosal vascular addressin cell adhesion

) is usually found as soluble molecule. Multiple of such interactions cause the
ttachment and often extravasation.
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TABLE 2

Examples of in vivo evaluated selectin-targeting concepts

Category (name) Target Indication Refs

Antibodies
CDP850 (SPLAT-1) E-selectin Psoriasis [36,37]

No name specified E-selectin Subarachnoid haemorrhage [38]

RB40.34 P-selectin Cerebral ischemia [40]
Restenosis [39]

HuEP5C7.g2 E,P-selectin Pharmacokinetic study [41]

No name specified L-selectin Graft-versus-host-disease [42]

RatPSG-huG1 PSGL-1 Post-ischemic damage (in transplantation) [58]
4RA10 PSGL-1 Restenosis [39]

Recombinant selectin counter-receptors
rPSGL-Ig E,P-selectin Post-ischemic damage (myocardial infarction) [45,49]

Transplantation [46]

Thrombosis [43]

Restenosis [47]
Arthritis [48]

Low molecular weight antagonists
CY1503 (cylexin) E,P-selectin Post-ischemic damage [50]

TBC1269 (bimosiamose) E,P-selectin Post-ischemic damage (myocardial infarction) [53]
Transplantation [54]

Psoriasis [56]

Asthma [57]
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represents an early step in the pathogenesis of diseases that are a

result of excessive leukocyte recruitment and/or thrombosis. Inter-

fering with the binding of selectin ligands has, therefore, great

therapeutic potential. Several antagonists have been developed to

either inhibit or to exploit platelet–leukocyte–endothelium inter-

actions for therapeutic and diagnostic purposes (Table 2). A phar-

maceutical approach that targets selectins or selectin ligands to

achieve site-specific drug delivery has been reviewed elsewhere

[11].

Anti-selectin antibodies
Although anti-selectin antibodies were initially employed to study

the (patho)physiological role of selectins, they were later devel-

oped for therapeutic application to interrupt the selectin–receptor

interactions involved in pathogenesis. Even if there have been

failures in clinical trials, the therapeutic potential of such anti-

bodies is highlighted by recent studies in various animal disease

models.

SPLAT-1 (CDP850) represents an engineered human antibody to

E-selectin. Initial characterization revealed its capacity to block

leukocyte adhesion to E-selectin-presenting surfaces in vitro.

Therefore, this antibody was thought to have the potential to

reduce leukocyte attachment to activated endothelium, thereby

inhibiting cell recruitment into the tissue. This could indeed be

demonstrated for inflamed human skin grafted on SCID mice.

Although no adverse reactions were observed in primates and this

antibody was well tolerated in a randomized clinical trial, it failed

to reduce the numbers of neutrophils and lymphocytes within the

inflamed dermis of psoriasis patients and to improve the disease

symptoms [36,37]. No further studies using CDP850 have been

reported since the initial evaluation.

Another anti-E-selectin antibody was reported to reduce the

inflammatory response when applied as bolus injection immedi-

ately after experimental subarachnoid haemorrhage in mice [38].

The therapeutic rational behind this treatment was seen in
elevated levelsofE-selectinwithin thecerebrospinalfluid ofpatients

that developed vasospasms following haemorrhage. Unfortunately,

the antibody used was not further characterized by the Taiwanese

authors. Rat anti-mouse-P-selectin antibody (RB 40.34) significantly

reduced neointima formation and vessel wall thickening after car-

otid injury in atherosclerosis-prone mice, suggesting a potential

effectiveness against restenosis [39] (for more information see the

‘Anti-selectin counter-receptor antibodies’ Section).

The therapeutic rationale of single selectin inhibition might be

limited by redundancy of P- and E-selectin and coexpression of

non-selectin adhesion molecules. Exclusion (or attraction) of leu-

kocyte subpopulations might also cause undesired reactions as

exemplified by reduced survival (28% versus 71%) of Mongolian

gerbils treated with rat RB 40.34 after global cerebral ischemia [40].

An advanced humanized and complementarity-determining

region-grafted antibody with reactivity against not only E- but also

P-selectin was engineered from murine mAb mEP-5C7 and termed

HuEP5C7.g2 [41]. This antibody was able to effectively block bind-

ing of HL-60 leukemia cells to E- and P-selectin positive cells and

possessed favourable pharmacokinetic properties in rhesus mon-

keys with an elimination half-life of approximately seven days.

Finally, acute graft-versus-host disease, which is a significant

complication after bone marrow transplantation, could be

delayed in transplanted mice when the tissue was pretreated with

anti-L-selectin antibody [42].

Recombinant selectin counter-receptors
Selectin blockade using a recombinant derivative of the counter-

receptor PSGL-1 represents an alternative therapeutic approach to

blocking anti-selectin antibodies. In contrast to antibodies, the

recombinant ligand targets all selectin subtypes, although with

different affinities. It might therefore be particularly useful in the

majority of cases, when different selectins that can complement

each other, such as P- and E- selectin, are coexpressed in the

diseased area.
www.drugdiscoverytoday.com 1037
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A recombinant PSGL-1 immunoglobulin chimera (rPSGL-Ig)

comprises the N-terminal 47 amino acids of the mature human

PSGL-1 fused to the hinge region of human IgG1, which was

modified for reduced complement activation and Fc receptor

binding. This IgG chimera has a long circulation half-life of

�11 days in pigs, and production in mammalian cells assures

correct carbohydrate modification for high-affinity binding to

P- as well as E-selectin, and, with lower affinity, to L-selectin

[43]. Evaluation of its safety in mice and rats showed good toler-

ability with no severe suppression of immune response to systemic

bacterial infection [44].

Usefulness of this selectin inhibitor was evaluated for several

potentially relevant conditions. In a porcine model of arterial

thrombosis, coadministration with tissue plasminogen activator

(tPA) reduced the time to thrombolysis to one-third [43].

Furthermore, rPSGL-Ig reduced post-ischemic damage after

ischemia in rat liver and kidney, mouse intestine and pig myocard

[45,46]. Consequently, organ survival after transplanatation

might be increased by rPSGL-Ig, and doses of toxic sirolimus or

cyclosporine for maintenance of long-term function of the trans-

plant might be decreased.

PSGL-1–P-selectin binding is also involved in neutrophil and

platelet adhesion to damaged vessel walls, inducing local inflam-

matory reactions that can ultimately lead to thrombosis and

(re)stenosis. Indeed, rPSGL-1 reduced adhesion of neutrophils

and platelets in vivo in injured pig arteries [47].

Finally, the biological effects of rPSGL-Ig were evaluated in a

model of collagen-induced arthritis in mice. A reduction in cel-

lularity and TNF levels in the synovium suppressed progression of

the disease and protected from joint damage, suggesting further

therapeutic potential of rPSGL-Ig [48]. Nevertheless, clinical

development of rPSGL-Ig was discontinued by Wyeth Pharma-

ceuticals after disappointing results in myocardial infarction

trials [49] and has been licensed to Y’s Therapeutics that initiated

a Phase II clinical trial, evaluating the potential of this molecule

to prevent delayed graft function of kidney transplants

(www.ysthera.com).

Low molecular weight selectin antagonists
Selectins bind to ligands via the interaction of the selectin’s C-type

lectin domain with carbohydrate modifications on the selectin

ligand. As a consequence, the isolated sugar moiety was thought

sufficient to antagonize selectin–ligand binding. Many of the

pharmacokinetic properties of such low molecular weight selectin

inhibitors might, unlike the antibodies discussed above, in prin-

ciple be tailored to practical needs. Desired properties include oral

availability, tissue distribution or predictable hepatic and renal

elimination. In addition, their production should be considerably

cheaper.

There is a long history of selectin-directed glycomimetics, a

summary of which can be found in an excellent review by Kaila

and Thomas [50]. Sialyl Lewis X, the obvious choice for such an

antagonist, proved unsuccessful, presumably because of its low

affinity for E- and P-selectin. CY1503 (cylexin), a pentasaccharide

with sLex substructure, blocks selectin activity in a variety of

animal models. Nevertheless, the candidate showed no benefit

over the placebo in Phase II and III clinical trials for treatment of

reperfusion injury, which was attributed to its high molecular
1038 www.drugdiscoverytoday.com
weight (>100 kDa) and its extended structure causing low bioa-

vailability and rapid degradation [50]. Modified trisaccharide sLex

mimetics effectively suffered the same problems [50]. A new

approach, involving careful molecular analysis of the multiple

interactions involved in sugar binding to a relatively shallow

groove on the selectin receptor, forms the basis for rational drug

design [50]. The conjugated monosaccharide dimer bimosiamose

(TBC1269, 1,6-bis[3-(3-carboxy-methylphenyl)-4-(2-a-D-manno-

pyranosyloxy)-pheny]hexane) [51] represents perhaps the most

promising drug candidate obtained using this approach, and is

currently in clinical development by Revotar Biopharmaceuticals

[49]. Safety and pharmacokinetic properties after intravenous

infusion proved to be suitable in a Phase I study in human [52].

Initial efficacy studies in experimental animals showed attenuated

reperfusion injury after myocardial infarction in rats [53] and

prolonged survival after allogeneic kidney transplantation [54].

Both effects were ascribed to inhibition of leukocyte extravasation

at the level of tethering to the activated endothelium, albeit work

by Hicks et al. [55] suggested that the in vivo effects of TBC1269

might be mediated through E-selectin and do not involve cell

rolling. Latest clinical evaluation in human demonstrated that

treatment with 600 mg over 14 days by subcutaneous injection

improved skin lesions in psoriasis patients [56] and inhalation

reduced the reaction of mild asthmatics following antigen

challenge [57]. Long-term treatment and dose reduction might,

however, be limited as selectin-mediated cell interactions are of

high avidity, involving multiple low affinity binding events that

need to be permanently inhibited.

Anti-selectin counter-receptor antibodies
The targeting of the selectin counter-receptor instead of the selec-

tin itself might provide a viable alternative if equally effective.

Inactivation of PSGL-1 expressed on leukocytes should, for exam-

ple, not only reduce attachment to the endothelium and invasion

of the target tissue but also reduce leukocyte interplay and selectin

upregulation, while avoiding opsonization of the diseased tissue

by anti-selectin antibodies [58]. Hence, this approach was primar-

ily tested in experimental organ transplantation, where these

potential effects might further reduce the risk of undesired side

effects. In fact, pretreatment with a neutralizing anti-PSGL-1 anti-

body (Wyeth Pharmaceuticals) showed a protective effect

against ischemia reperfusion injury in transplanted rat livers

[58]. Infiltration with neutrophils, macrophages and dendritic

cells, as well as the number of apoptotic cells, was markedly

decreased in comparison with control animals, resulting in

minimal vascular obstruction and necrosis.

Selectin–receptor interaction is also crucial following blood

vessel injury. Exposure of the subendothelial basement membrane

results in adhesion of P-selectin-presenting platelets and recruit-

ment of leukocytes via PSGL-1, causing neointima formation,

vessel wall thickening and a reduction in effective vessel diameter,

if not its obstruction. When it follows balloon expansion of

atherosclerotic vessels, this process is called restenosis. Although

P-selectin antibodies are able to disrupt this inflammatory cascade,

blocking PSGL-1 antibodies was equally effective in reducing

inflammation and stenosis [39]. In this comparative study, mice

with carotid injury were treated with a monoclonal anti-PSGL-1

antibody (4RA10) or an anti-P-selectin antibody (RB 40.34).

http://www.ysthera.com/
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Induction of E-selectin tolerance
A completely different approach to achieve an anti-inflammatory

effect at selectin-positive target sites is exploiting the host’s own

immune system. Induction of regulatory T-cells directed against

selectin epitopes might provide a biologic means to suppress

immune response at the inflamed epithelium by the release of

inhibitory cytokines. As E-selectin is expressed for a prolonged

time after pro-inflammatory endothelial stimulation, induction of

mucosal tolerance against this member of the selectin family was

examined. Repetitive administration of a low dose of E-selectin by

nasal instillation not only induced tolerance to that antigen, but

also reduced the incidence of ischemic and haemorrhagic strokes

in spontaneously hypertensive SHR-SP rats [59]. It was further

shown that E-selectin tolerance had the capacity to reduce the

extent of post-ischemic damage to the infarcted brain tissue after

experimental cerebral artery occlusion [60]. Tolerance was demon-

strated in rat after two intranasal instillations of E-selectin by an

almost absent delayed-type hypersensitivity reaction against E-

selectin in the ear thickness test, unlike in control animals. Trans-

fer of T-cell mitogen-treated cell suspensions isolated from the

spleen of these rats also reduced infarct volumes in the naı̈ve

recipient. The applicability of this approach in the human species,

as well as potential undesired effects associated with this more or

less permanent knockout of a central leukocyte homeostasis

mechanism, remains to be established. Recruiting for a Phase II

study that evaluates the safety and effectiveness of an intranasal E-

selectin spray in 60 healthy patients with previous stroke

(NCT00012454, www.clinicaltrials.gov/ct) has been completed,

but results of this study have not been made available yet.

Diagnostic selectin targeting
Finally, efforts are being made to exploit the specific cell surface

expression of selectins for the detection and imaging of lymphoid

tissues, inflamed vasculature and metastatic cancer cells. In the

mid 90s, successful in vivo labelling of inflamed arthritic joints

using the 111Indium-conjugated monoclonal anti-E-selectin anti-

body 1.2B6 and its F(ab)2-fragment was reported [61]. This

approach using scintigraphy was later applied to assess the loca-

lization and extent of inflammation in patients with rheumatoid

arthritis and inflammatory bowel disease [62,63].

These successes have stimulated the development of non-

radioactive selectin-targeted in vivo diagnostics. Various new mag-

netic resonance contrast agents were described, in which targeting
was achieved by monoclonal anti-E-selectin antibodies or sLex

mimetics. The latter was reported to enable imaging of activated

endothelium in the inflamed tissue of rats following focal ischemia

of the brain and in hepatitis [64,65]. Furthermore, the monoclonal

antibody MECA-79 with specificity for L-selectin, the major lym-

phocyte homing receptor, was conjugated to a near-infrared fluor-

escent dye to successfully stain lymph nodes of mice in whole-body

fluorescence imaging [66]. In an attempt to increase binding

specificity and signal strength, Funovics et al. [67] choose to attach

E-selectin-binding peptides to fluorescent nanoparticles containing

Cy5.

In an approach to improve the signal-to-noise ratio of selectin-

targeted imaging agents, sLex was combined with an anti-ICAM-1

(intercellular adhesion molecule-1) antibody on microbubbles that

can be imaged via ultrasound. ICAM-1 is coexpressed with E- and P-

selectin on activated endothelium to enable integrin-mediated cell

binding after initial tethering via selectins. In vitro evaluations of

microbubbles targeted to both receptors under shear stress demon-

strated superiority to constructs targeted to ICAM-1 or selectins

alone [68].

Conclusions
In this review we have highlighted the potential of selectins and

their ligands as target structures in the context of pharmacotherapy

and diagnostics. Selectin–ligand interactions provide the initial

binding in a multi-step process leading to adhesion between plate-

lets, leukocytes and the endothelium. Hence, selectins are key

players in inflammation and thrombosis, and therefore an ideal

drug target. In addition, they are overexpressed at sites of inflam-

mation and tumour growth, suggesting them also as potential

targets for diagnostic markers. As glycosylation of the selectin

counter-receptors isessential for selectin binding,enzymes involved

in these modifications, such as fucosyltransferase, might provide

additional targets that deserve further investigation.

Currently, only a few of selectin-targeted drugs have progressed

into clinical trials and only a limited number has proven its

potential in vivo. Nevertheless, it should be considered that the

selectin–ligand interaction has not always been thoroughly vali-

dated as suitable drug target. Such target verification might have

been hampered by technical problems imposed by the central

physiological role of selectins, which might in itself bear the risk

of undesired and unexpected effects of any selectin-targeting

therapy.
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