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Cell–cell contact is central to cell polarity,

tissue organization and compartmentalization

of organ systems. Cadherins are a large

superfamily of cell–cell adhesion molecules

that are fundamental determinants of

how and when cells interact, migrate

and undergo morphogenetic conversions

(Gumbiner, 2005; Halbleib and Nelson,

2006; Hulpiau and van Roy, 2011; Niessen

et al., 2011; Pokutta and Weis, 2007; Saburi

and McNeill, 2005). The activity of cadherins

was originally appreciated in the context of

compaction of epithelial cells during

development (Takeichi, 1988). Since these

early studies, the discovery of many

additional cadherin superfamily members

has resulted in a plethora of publications

describing their structure and function in a

wide range of molecular interactions and

cellular activities. Many cadherins operate to

mechanically couple adjacent cells by

mediating cell–cell interactions within

highly ordered junctional complexes. These

complexes include the actin-associated

adherens junctions, intermediate-filament-

associated desmosomes, intercalated discs

between cardiomyocytes, and a variety of

other related junctions with tissue-specific

functions (Delva et al., 2009; Franke, 2009;

Niessen and Gottardi, 2008; Niessen et al.,

2011). Cadherin-based adhesive intercellular

junctions drive tissue morphogenesis during

development and are essential for the

maintenance of adult tissue architecture in

virtually all complex tissues (Gumbiner,

2005; Stepniak et al., 2009).

In addition to mediating cell adhesion,

cadherins function as signaling scaffolds

that regulate cell motility, proliferation and

gene expression. As outlined in this Cell

Science at a Glance poster article, cadherins

participate in the regulation of a number of

(See poster insert)
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cellular networks including membrane
trafficking pathways, growth factor signaling,

Rho family GTPase activities, cytoskeletal
remodeling, and gene-expression programs.
Recent work has revealed that these regulatory
and signaling pathways are often altered in

human diseases with compromised cadherin
function. This Cell Science at a Glance article
aims to highlight the characteristics of

classical and desmosomal cadherins, the
cellular machinery with which these
adhesion molecules interact and the diseases

that directly result from compromised
cadherin function.

The cadherin superfamily
Cadherins comprise a large superfamily
with over 350 members (Hulpiau and van
Roy, 2009; Hulpiau and van Roy, 2011).

The most salient feature of this superfamily
is the presence of a variable number of
successive extracellular cadherin (EC)

repeat domains, each comprising ,110
amino acids, that are rigidified by binding
three Ca2+ ions at linker regions between
these domains (Boggon et al., 2002; Ciatto

et al., 2010; Hulpiau and van Roy, 2009).
Sequence similarity has been used to
categorize cadherins into subfamilies that

include classical, desmosomal and proto-
cadherins and a variety of other cadherin
subfamily members that exhibit a wide

range of activities and binding partners.
Here, we restrict our focus to the classical
and desmosomal cadherins.

The ectodomain of both classical and
desmosomal cadherins comprises five
highly conserved EC domains (EC1–EC5),
with the most membrane-proximal (EC5)

domain of the desmosomal cadherins
sometimes being referred to as the
extracellular anchor (EA) domain (Boggon

et al., 2002; Delva et al., 2009; Shapiro and
Weis, 2009). The type I and type II classical
cadherins were originally named on the

basis of the tissues within which they were
first identified [e.g. type I, epithelial (E)-
cadherin and neural (N)-cadherin, type II
vascular endothelial (VE)-cadherin and

kidney (K)-cadherin; CDH1, CDH2,
CDH5 and CDH6, respectively]. However,
their expression is not always restricted to

these tissues (see Poster) (Gumbiner,
2005; Leckband and Prakasam, 2006).
Desmosomal cadherins, the desmogleins

and desmocollins, are expressed primarily
in epithelial tissues and cardiac muscle
(Green and Simpson, 2007; Hulpiau and

van Roy, 2009; Nollet et al., 2000). In
humans, there are four desmoglein (DSG1–

DSG4) and three desmocollin (DSC1–

DSC3) genes. All three desmocollin gene

products are subjected to alternative
splicing to generate the type ‘a’ form and
the shorter type ‘b’ form. Both desmocollin

isoforms localize to desmosomes, although
the shorter ‘b’ form lacks the intracellular
cadherin segment (ICS) domain, where
plakoglobin binds, and thus might have

less extensive cytoskeletal linkages (Green
and Simpson, 2007; North et al., 1999).

Interactions between cadherins
In classical cadherins, the EC1 domains
engage homophilically in trans interactions
through the exchange or swap of their N-

terminal b-strands (Harrison et al., 2010).
The formation of this strand-exchange dimer
involves the insertion of the conserved EC1

Trp2 residue of one cadherin into the
hydrophobic pocket located in EC1 of a
partner cadherin. The residues that flank
Trp2 form additional interactions that

stabilize the formation of this dimer. In
addition, other regions within EC1
participate in lateral cis interactions with a

region of the EC2 domain of a neighboring
molecule. Cooperativity between the strong
trans-dimers and weak cis interactions is

necessary for the production of stable
and higher-ordered junctional structures
(Harrison et al., 2011). Desmosomal

cadherins also have the Trp2 residue and
hydrophobic pocket required for the EC1
trans b-strand swap but lack sequences that
are similar to the cis interface sequences of

the type I cadherins. However, visualization
of the three-dimensional organization of
native desmosomes has revealed that

desmosomal cadherins do participate in cis
interactions (Al-Amoudi et al., 2007).
Additionally, the desmosomal cadherins

have been reported to interact both
homophilically and heterophilically (Green
and Simpson, 2007; Thomason et al., 2010).

Classical and desmosomal
cadherins at cell–cell junctions
The intracellular domains of classical and
desmosomal cadherins specify whether they

are tethered to the actin or intermediate
filament cytoskeleton (Delva et al., 2009;
Shapiro and Weis, 2009). The cytoplasmic

domain of classical cadherins directly binds
to the armadillo protein family members
p120-catenin and b-catenin, and interacts

indirectly with a-catenin, a member of the
vinculin superfamily (Shapiro and Weis,
2009). Binding of p120-catenin to the

cadherin juxtamembrane (JMD) domain
stabilizes the cadherin complex by
preventing cadherin internalization and

degradation (Davis et al., 2003; Xiao et al.,
2003) (see Poster). The mechanism by

which classical cadherins are linked to the
actin cytoskeleton was assumed to be a
static bridge formed by a-catenin binding to
both F-actin and cadherin-bound b-catenin

(Gates and Peifer, 2005; Kwiatkowski et al.,
2010). More recent studies challenge this
model and demonstrate that a-catenin

cannot bind b-catenin and F-actin
simultaneously (Drees et al., 2005;
Yamada et al., 2005). Although the precise

mechanism of coupling cadherins to the
actin cytoskeleton remains elusive,
numerous observations indicate that this
linkage is crucial in mediating adherens

junction assembly, maintenance and
adhesion (Hartsock and Nelson, 2008;
Kwiatkowski et al., 2010; Pokutta and

Weis, 2007; Taguchi et al., 2011;
Yonemura, 2011; Yonemura et al., 2010).

The cytoplasmic domains of desmosomal

cadherins are coupled to intermediate
filaments through associations with
the b-catenin-related armadillo protein

plakoglobin, and the plakophilins (Al-
Amoudi et al., 2011; Carnahan et al.,
2010; Hatzfeld, 2007). Desmoplakin (DP),
a member of the plakin family of cytolinker

proteins, links the desmosomal cadherin
complex to the cytoskeleton by binding
plakophilins and plakoglobin at its N-

terminus and intermediate filaments at its
C-terminus (Desai et al., 2009; Thomason
et al., 2010) (see Poster). The linkage

between the intermediate filament
cytoskeleton and desmosomal cadherin
complexes is crucial to tissues that
experience substantial mechanical stress,

such as the myocardium and stratified
epithelia (Simpson et al., 2011).

Classical cadherin sorting and
processing
Cadherins assemble into robust adhesive

intercellular junctions, but these complexes
exhibit considerable plasticity and
undergo dynamic cycles of assembly and
disassembly (Niessen et al., 2011). For

example, proteolytic processing of cadherin
ectodomains provides a rapid mechanism for
cadherin inactivation and turnover (Cavallaro

and Dejana, 2011; Seifert et al., 2009).
Furthermore, the highly regulated delivery
and retrieval of cadherins to and from the cell

surface by membrane trafficking pathways is
crucial for controlling the adhesive potential
of the cell surface (Chiasson and Kowalczyk,

2008). Distinct endocytic mechanisms have
been implicated in cadherin regulation,
including clathrin-, caveolae-, lipid-raft- and
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macropinocytotic-mediated internalization
(Delva and Kowalczyk, 2009). The cues

that select cadherins for a specific
internalization pathway are not well

understood, although substantial progress
has been made for classical cadherins. For
example, E-cadherin and VE-cadherin are

typically internalized through clathrin-
dependent pathways (Ivanov et al., 2004;

Izumi et al., 2004; Le et al., 1999; Xiao et al.,
2005). The clathrin adaptor protein complex

2 (AP-2) has been shown to associate with
the cytoplasmic domains of VE-cadherin and
E-cadherin and appears crucial for

endocytosis of classical cadherins (Chiasson
et al., 2009; Sato et al., 2011). p120-catenin

appears to modulate the access of clathrin
adaptors to the cadherin tail by masking
endocytic signals and thereby preventing

cadherin recruitment into clathrin- and AP-
2-enriched membrane domains (Chiasson et

al., 2009; Xiao et al., 2005). In the case of E-
cadherin, a putative dileucine AP-2-binding

motif has been shown to regulate endocytosis
and lysosomal targeting (Miyashita and
Ozawa, 2007a; Miyashita and Ozawa,

2007b). Interestingly, this same dileucine
motif is also important for polarized delivery

of E-cadherin to the basolateral membrane
(Miranda et al., 2003; Miranda et al., 2001).

Beyond AP-2 and clathrin, other molecules
that have been implicated in cadherin
endocytosis include Hakai (also known as

CBLL1), an E3 ubiquitin ligase, which
promotes ubiquitylation and endocytosis of

E-cadherin (Fujita et al., 2002), and b-
arrestin, which promotes internalization of
VE-cadherin (Gavard and Gutkind, 2006).

Further analysis of cadherin cytoplasmic tail
sequences is likely to reveal numerous

regulatory motifs that are used in a tissue-
and differentiation-specific manner to control

cadherin trafficking to and from the plasma
membrane.

Growing evidence suggests that cadherin-

mediated adhesion is tightly coupled
to membrane trafficking pathways. For

example, mutations in regulators of
membrane trafficking, such as Rab11, a
member of the Ras superfamily of

monomeric G-proteins, and dynamin, a
GTPase responsible for endocytosis in

eukaryotic cells, result in substantial
alterations in cadherin distribution and

phenotypes that can, at least in part, be
explained by altered adhesion (Niessen et al.,
2011). Furthermore, ablating p120-catenin

gene (Ctnnd1) expression leads to decreased
steady state cadherin levels in most tissues

analyzed, presumably because of increased
cadherin endocytosis and turnover (Davis

and Reynolds, 2006; Elia et al., 2006; Oas
et al., 2010; Perez-Moreno et al., 2006).

Type I gamma phosphatidylinositol-4-
phosphate 5-kinase (PIPKIc) modulates E-
cadherin trafficking by binding directly to E-
cadherin and preventing the association of

cadherin with the adaptor protein complex 1
(AP-1), a clathrin adaptor complex that is
important for delivery of newly synthesized

and recycled receptors to the plasma
membrane. Interestingly, a mutation in E-
cadherin that prevents binding to PIPKIc
leads to hereditary gastric cancers (Ling
et al., 2007). Thus, growing evidence
suggests that altered cadherin trafficking is
detrimental to normal tissue development

and homeostasis.

Cadherins and catenins in Wnt-
related signaling
Studies using fly, frog and mammalian
model systems have demonstrated that the

Wnt family of secreted protein ligands are
master mediators of cell–cell signaling
events and gene modulation during
embryogenesis, adult tissue maintenance

and regeneration (Sylvie et al.,
2012). Altered expression, mutation or
misregulation of Wnt pathway components

affects tissue morphogenesis and induces
multiple diseases, most notably cancer
(Heuberger and Birchmeier, 2010). The

cadherin-binding protein b-catenin has a
central role in canonical Wnt signaling
(Heuberger and Birchmeier, 2010; Logan

and Nusse, 2004; MacDonald et al., 2009).
In the absence of Wnt ligands, cytoplasmic
b-catenin (b-catenin not associated with
adherens junctions) is recruited into a

destruction complex that consists of
adenomatous polyposis coli protein (APC),
axin-bound casein kinase 1 and glycogen

synthase kinase-3. Following sequential
phosphorylation within the destruction
complex, b-catenin is targeted to and

degraded by the proteasome (Clevers,
2006; Heuberger and Birchmeier, 2010).
Therefore, in the absence of Wnt ligands,

cytoplasmic b-catenin is degraded and
levels remain low (see Poster).

In the presence of Wnt ligands, receptor
binding by the co-receptor complex of

Frizzled (a G-protein-coupled receptor) and
the lipoprotein-receptor-related proteins 5
and 6 (LRP5/6) leads to inactivation of the

destruction complex. Therefore, cytoplasmic
b-catenin levels are stabilized, leading
to interactions with T-cell factor (TCF)

or lymphoid-enhancer factor (LEF)
transcription factors. The interaction of b-
catenin with TCF releases the transcriptional

repressor Groucho [the transducin-like
enhancer (TLE) proteins in humans] from

the complex, thereby resulting in the
activation of Wnt target genes (Heuberger
and Birchmeier, 2010; Xue and Zhao,
2012). p120-catenin also regulates gene

expression albeit through a different
mechanism. Binding of p120-catenin to the
transcriptional repressor Kaiso relieves its

repression of, among others, Wnt-responsive
genes, resulting in enhanced gene expression
(Heuberger and Birchmeier, 2010). Thus, b-

catenin and p120-catenin have central roles
at both cell–cell junctions and in the nucleus,
and cadherin adhesive activity is likely to
provide a key input into this signaling axis

(Maher et al., 2009).

Cadherins in receptor tyrosine
kinase signaling
Cadherins exhibit reciprocal regulatory
relationships with receptor tyrosine

kinases (RTKs) to modulate cell adhesion,
migration and proliferation (Cavallaro and
Dejana, 2011; Niessen et al., 2011). For
example, E-cadherin has been found to

form complexes with the epidermal growth
factor receptor (EGFR) (Fedor-Chaiken
et al., 2003), and VE-cadherin has been

shown to associate with the vascular
endothelial growth factor receptor 2
(VEGFR2) (Carmeliet et al., 1999;

Lampugnani et al., 2003). Cytoplasmic
associations with Src family and other
kinases further modulate both cadherin

and catenin tyrosine phosphorylation
(Niessen et al., 2011). Not surprisingly, a
number of transmembrane and cytoplasmic
phosphatases are also enriched at cell–cell

junctions, and the phosphorylation status
has been reported to modulate cadherin–
catenin interactions and catenin signaling

(Cavallaro and Dejana, 2011). Interestingly,
cadherin endocytosis is regulated by both
RTKs and Src (Troyanovsky, 2009).

Likewise, VEGF receptor endocytosis and
signaling is regulated by VE-cadherin,
demonstrating a bidirectional regulation of

adhesion and signaling activities
(Lampugnani et al., 2006).

Desmosomal cadherins also exhibit
reciprocal regulation with RTKs,

particularly the EGFR (Simpson et al.,
2011). This regulation is especially
interesting in the case of desmogleins,

where DSG1 has been shown to suppress
EGFR activity in order to drive epidermal
differentiation (Getsios et al., 2009).

Furthermore, inhibition of EGFR
stabilizes desmogleins at the cell surface
by preventing desmoglein endocytosis
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(Klessner et al., 2009). This pathway might
be important in disease states, such as

pemphigus vulgaris and related disorders,
because it is possible that the adhesive
activity of cadherin would be stabilized by
inhibition of EGFR activity or signals

emanating downstream of the receptor
(see Poster). In pemphigus vulgaris,
patients generate autoantibodies (IgG)

directed against desmogleins, resulting in
weakened adhesion, as well as blistering in
the epidermis (Amagai and Stanley, 2011).

A number of studies have suggested that
signaling pathways, including those
mediated through EGFR, p38 mitogen-
activated protein kinase (MAPK14) and

Myc, among others, are activated
downstream of autoantibody binding
(Getsios et al., 2010; Müller et al., 2008).

Although the details of how these
pathways interact with desmogleins on a
molecular level remain to be determined,

pemphigus represents a clear example of
how the desmosomal adhesion and growth
factor receptor signaling pathway might be

targeted therapeutically.

Role of cadherins in small GTPase
signaling
Cadherin engagement exerts local control
over cytoskeletal organization to regulate
cell shape and polarity. This control is

largely exerted through small GTPases of
the Rho family. Interestingly, GTPase
activation in the context of cell adhesion

varies even among closely related
cadherins, perhaps because of differences
in cellular background. This signaling
diversity makes it difficult to draw a

generalized model (Braga and Yap,
2005). In the case of E-cadherin-mediated
cell adhesion, cadherin engagement

stimulates phosphatidylinositol 3-kinase
(PI3K) (Pece et al., 1999), in response to
which Tiam1, a guanine nucleotide

exchange factor (GEF), activates Rac1,
thereby causing Rac1 to accumulate at
cell–cell contacts (Watanabe et al., 2009).
Following cadherin engagement, Cdc42 is

also recruited to cell–cell junctions and
subsequently activated. Furthermore, E-
cadherin recruits and activates Rap1, a

Ras family GTPase member, which is
required for Cdc42 activation (Hogan
et al., 2004). p120-catenin also activates

Rac1 and Cdc42 through binding to Vav2,
a Rho family GEF (Noren et al., 2000).
Furthermore, the Ras GTPase-activating-

like protein IQGAP1 activates Rac1 and
Cdc42 to subsequently induce actin cross-
linking and inhibit cadherin endocytosis.

Additional junctional components are
recruited to the contact site to promote

actin polymerization through the actin-
related protein 2/3 (Arp2/3) complex and
members of the Wiskott–Aldrich syndrome
protein (WASP) and WASP-family

verprolin-homologous protein (WAVE)
families (Watanabe et al., 2009). An
additional layer of control results from

Rac1 antagonizing RhoA activity through
a mechanism that involves p120-catenin
and p190 RhoGAP (Bustos et al., 2008;

Wildenberg et al., 2006). RhoA is
preferentially activated at the distal edge
of cell–cell contacts (Yamada and Nelson,
2007a). Rho-kinase, an effector of RhoA,

increases phosphorylation of myosin light
chain and subsequent phosphorylation of
myosin II, which results in actomyosin

contraction, suggesting that RhoA is
involved in the expansion of cell–cell
adhesion sites (Watanabe et al., 2009;

Yamada and Nelson, 2007a).

Cadherins targeted in human disease
A number of human diseases result from

compromised cadherin function, including
cancer, neuronal and mental health
disorders, as well as skin and

cardiovascular diseases. The loss of E-
cadherin function, functionally, genetically
or epigenetically, contributes to the

acquisition of an invasive phenotype in a
wide range of epithelial tumor types (Berx
and van Roy, 2009; Carneiro et al., 2008;

Wheelock et al., 2008). E-cadherin
downregulation is often associated with
an upregulation of N-cadherin through a
process known as ‘cadherin switching’.

Cadherin switching is thought to be a
key event in epithelial-to-mesenchymal
transition (EMT), a process in which

epithelial cells lose their characteristic
polarity and cell–cell junctions to become
highly motile and invasive (Wheelock

et al., 2008). Recent evidence also suggests
that there is a role for desmosomal cadherins
in tumor suppression, and additional studies

to understand how this cadherin subfamily
modulates the tumor phenotype are clearly
warranted (Berx and van Roy, 2009; Dusek
and Attardi, 2011).

In addition to cancers, genetic studies
have identified potential roles for cadherins,
including cadherin-9 and cadherin-10, in

autism spectrum disorders (Morrow et al.,
2008; Wang et al., 2009). Recent studies of
classical cadherins (cadherin-6 and cadherin-

9) reveal key functions for these adhesion
molecules in axonal targeting (Rebsam and
Mason, 2011). As synapses of the central

nervous system are specialized adhesive
junctions, cadherins are now considered to

be possible therapeutic targets in cognitive
disorders (Arikkath and Reichardt, 2008;
Bourgeron, 2007; Yamada and Nelson,
2007b). Desmosomal cadherins and their

associated plaque proteins are crucial for
normal function of skin and heart. In the
epidermis, inactivation of desmosomal

proteins can be caused by autoantibody
inhibition, mutations in the genes encoding
these proteins or by proteases released during

staphylococcal bacterial infection (see
Poster) (Stanley and Amagai, 2006).
In many of these instances, the
resulting clinical presentations include

epidermal fragility and blistering. However,
thickening of the epidermis (hyperkeratosis)
and ectodermal dysplasia can also be

observed, suggesting important roles for
desmosomal components in epidermal
differentiation (Getsios et al., 2009;

Simpson et al., 2011). Similarly, in the
heart, mutations in DSG2, DSC2 and
several cadherin-associated proteins,

including plakoglobin, desmoplakin and
plakophilin-2, lead to cardiomyopathies
(Lai-Cheong et al., 2007; Thomason et al.,
2010). These cardiac disorders are

characterized by both alterations in the
mechanical and signaling functions of
desmosomes.

Recent studies have also revealed a
rather remarkable and central role for
cadherins in host–pathogen interactions.

Indeed, a number of pathogens target
cadherins in order to establish
colonization of cells and tissues (Bonazzi
and Cossart, 2011). Recognition of specific

cadherins by bacteria often mediates either
attachment of the microorganisms to the
cell surface and/or internalization into the

cell. For example, in listeriosis, Listeria

monocytogenes invade host cells through a
clathrin-dependent internalization process

in which human E-cadherin is used as a
receptor for a bacterial surface protein
named internalin (Bonazzi et al., 2009).

The recent identification of DSG2 as an
adenoviral receptor further highlights the
importance of cadherins in host–pathogen
interactions (Wang et al., 2011).

Collectively, these examples highlight the
ways in which cadherin function is
impaired or hijacked during disease.

Future perspectives
Since the discovery of cadherins over 30

years ago, overwhelming evidence has
demonstrated that one of their primary
functions is to establish and maintain
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cell–cell adhesion on the cellular and tissue

level. These adhesive events induce

changes in the cytoskeleton and also

initiate and modulate signaling cascades

that affect gene expression programs to

control growth and, in some cases, cell fate

determination. In many instances, these

signaling pathways feed back to modulate

cell adhesion either directly or on a

transcriptional and/or post-transcriptional

level. The wide range of cellular functions

of cadherins, and the scope of cellular

signaling activities in which cadherins

engage, reflect the diversity of the

cadherin superfamily. A challenge for the

future will be to elucidate the regulatory

mechanisms that govern cadherin gene

expression, trafficking and processing,

and how these events integrate with other

cellular signaling pathways to drive tissue

patterning. Finally, further identification of

cadherin dysfunction within disease states

will provide important clues that will

expand our understanding of how

different cadherin subclasses function at

the molecular and tissue level. These

advances will, in turn, yield new

approaches to treat human diseases that

are associated with alterations in cadherin

function.
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