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We have learned over the last several decades that the
brain is an important target for insulin action. Insulin in
the central nervous system (CNS) affects feeding be-
havior and body energy stores, the metabolism of
glucose and fats in the liver and adipose, and various
aspects of memory and cognition. Insulin may even
influence the development or progression of Alzheimer
disease. Yet, a number of seemingly simple questions
(e.g., What is the pathway for delivery of insulin to the
brain? Is insulin’s delivery to the brain mediated by the
insulin receptor and is it a regulated process? Is brain
insulin delivery affected by insulin resistance?) are unan-
swered. Here we briefly review accumulated findings
affirming the importance of insulin as a CNS regulatory
peptide, examine the current understanding of how pe-
ripheral insulin is delivered to the brain, and identify key
gaps in the current understanding of this process.

Accumulating information suggests several significant
roles for insulin action in the brain. Here, we briefly review
selected studies that provoke exploration of this emerging
field. More pointedly, we highlight seemingly serious
deficiencies in our understanding of how insulin from
the systemic circulation might actually get to the brain
parenchyma, and suggest that addressing these deficien-
cies is requisite to both a basic understanding of insulin
physiology and a rational consideration of therapeutics
involving the delivery of insulin to the brain.

BRAIN INSULIN ACTION

Because bulk brain glucose uptake is not affected by
insulin in either rats (1) or humans (2,3), the brain had
long been considered “insulin insensitive.” While there is

evidence for the expression and activity of glucose trans-
port with the insulin-sensitive GLUT4 in a few selected
nuclei, glucose transport into most neurons is GLUT3
dependent, while the glia and brain endothelial cells de-
pend on GLUT1 activity for glucose uptake from brain
interstitial fluid (ISF) and plasma, respectively (4). As in-
sulin is not required for GLUT1- or GLUT3-mediated glu-
cose transport, insulin is not needed for glucose transport
into most brain cells. Insulin does, however, play a role as
a neuroregulatory peptide, and this role is slowly being
unraveled (5). Early, provocative studies showed that
chronic intracerebroventricular (ICV) insulin administra-
tion markedly decreased food intake and body weight in
primates (6). In contrast, intravenous insulin administra-
tion to humans during an euglycemic clamp did not acutely
affect food intake (7). However, chronic intranasal insulin
administration, which allows more direct access to the
cerebrospinal fluid (CSF) than systemic insulin adminis-
tration, decreased food intake in fasting men and acutely
affected postprandial selection of palatable food by
women without causing hypoglycemia (8,9). In addition,
the correlation between adiposity and basal plasma insu-
lin level led to the hypothesis that insulin in the central
nervous system (CNS) could, like leptin, be a chronic sig-
nal regulating or reporting on energy reserves, as opposed
to an acute satiety signal (10). Consistent with an
important role for CNS insulin action, neuron-specific
knockout of the insulin receptor (NIRKO mouse)
enhanced diet-induced obesity and provoked insulin re-
sistance, hypertriglyceridemia, and reproductive dys-
function (11). Thus, insulin in the brain appears to be
important for the regulation of feeding behavior and
monitoring energy stores.
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During the past decade, acute insulin action in the CNS
has been reported to regulate whole-body metabolic
function. Obici et al. (12) demonstrated that acute deliv-
ery of insulin via ICV injection suppressed hepatic glu-
cose production (HGP) in conscious rats. Moreover,
ICV-delivered antisense oligonucleotide knockdown of
the insulin receptor (IR) blocked the ability of insulin to
regulate HGP in rats (13). In addition, the ability of ICV
insulin to regulate HGP is lost in NIRKO mice (11). The
arcuate nucleus in the hypothalamus appears to be critical,
as IR deletion in Agouti-related protein–expressing neurons
from this area blunted the ability of both systemic and ICV
insulin to inhibit HGP in mice (14). ICV insulin can also
acutely regulate lipolysis in white adipose tissue (15). In
contrast to these findings in rodents, studies in a canine
model have convincingly demonstrated that insulin acts di-
rectly at the liver to suppress HGP, and, while insulin acting
via the CNS can influence the expression of certain gluco-
neogenic enzymes, it adds little to the acute physiologic
regulation of hepatic glucose metabolism (16–18). Species
and significant methodological differences cloud the resolu-
tion of these disparate findings, and definitive addressing of
the question in humans is technically beyond reach.

Beyond the CNS effects of insulin on nutrient intake
and acute metabolic effects, there is tantalizing emerging
data on the effects of insulin on memory and cognition
(19,20). Recent work suggests that insulin has functional
effects in multiple brain areas. Most particularly, insulin
affects areas in the hippocampus that are active in reward
recognition, as well as areas involved in more global cog-
nitive and memory functions (21). These insights have
arisen from studies using either ICV or nasal insulin de-
livery, circumventing the metabolic effects of peripherally
delivered insulin that would limit such treatment to im-
prove cognitive function. Indeed, clinical trials examining
the effect of intranasal insulin as a potential therapy in early
Alzheimer disease are ongoing (see www.clinicaltrials.gov/
ct2/results?term=nasal+insulin).

LOCAL INSULIN PRODUCTION WITHIN THE BRAIN

The effects of insulin in the CNS raise questions regarding
how much circulating insulin reaches brain tissue and the
route by which this may occur. Before addressing that,
however, there is the recurring question of whether
insulin is produced locally within the brain. In Drosophila,
three of the seven circulating insulin-like peptides are
secreted from the brain (22) to act locally on feeding
behavior and systemically to regulate metabolism. While
early work (23) suggested that immunoreactive insulin
was present in rat brain at concentrations up to 100 times
higher than that in plasma, subsequent studies did not
confirm this (24), and definitive evidence for the brain
synthesizing significant amounts of insulin is lacking. Fur-
thermore, as insulin can clearly cross the blood-brain bar-
rier (BBB) and may be concentrated in CNS tissues, simple
immune detection will not provide definitive evidence for
a brain insulin source. An early RT-PCR study (25) found

very small amounts of rat insulin 2 (INS2) mRNA, but no
rat insulin 1 (INS1) gene expression throughout the rat
brain at all stages of development. This was confirmed in
rabbit brain where RT-PCR revealed that the insulin gene
was selectively expressed at low levels in olfactory bulbs
and hippocampal neurons (26). Transcription of the INS2
gene, but not the INS1 gene, in the CNS was shown in
mice (27,28). The INS2 gene is the rodent equivalent of
the human INS gene, which is indeed expressed in several
regions of the human brain (27). These studies did not
provide any evidence for a specific function for insulin pro-
duced within the CNS. Very recently, Molnár et al. (29)
reported detecting insulin mRNA in neurogliaform cells in
the rat cortex using single-cell quantitative RT-PCR. Impor-
tantly, they also observed that the quantity of INS2 mRNA
per cell was greater when the concentration of extracellular
glucose was increased. The number of spontaneous excit-
atory postsynaptic potentials measured in cells neighboring
neurogliaform cells was decreased when neurogliaform cells
were subjected to increasing extracellular glucose concentra-
tions. Interestingly, this effect was blocked when cells were
treated with the IR blocker S961. A similar effect of insulin
has been observed in mouse proopiomelanocortin neurons
(30). These data obtained from cerebral cortical neuroglial
cells provide the strongest evidence to date for locally pro-
duced insulin-regulating brain function as a neurotransmit-
ter in a glucose-regulated manner (29). Clearly, this finding
requires follow-up investigation.

DELIVERY OF INSULIN TO THE BRAIN

In multiple studies and several species (including humans),
CSF has been used as a surrogate for brain ISF. Recent
findings, however (vide infra), underscore that the compo-
sition of CSF measured in the cerebral ventricles or the
subarachnoid space of the cisterna magna or lumbar spine
is quite different from brain ISF. CSF contributes one
component to brain ISF, and solute transport across the
BBB provides another (Fig. 1). The relative contribution of
these two potential routes for allowing peripherally pro-
duced insulin access to brain ISF is unknown. Studies in
both experimental animals and humans uniformly indicate
that a large gradient exists between plasma and CSF insulin
concentrations in healthy individuals, with plasma concen-
trations being 10- to 20-fold higher (31–33) and this gra-
dient being even greater in obese humans (33). Analogous
findings are reported (34) for the leptin plasma/CSF gra-
dient, suggesting that the transport of both proteins into
CSF is quite restricted under healthy conditions and is
further impaired by insulin resistance. Such findings raise
the question of whether impaired systemic insulin delivery
to CSF could contribute to impaired feeding behavior, dys-
regulation of hepatic and adipose tissue metabolism, and
increase the risk for cognitive decline seen in type 2 di-
abetic and insulin-resistant patients (20). Clearly, this
would only be the case if insulin delivery via CSF is a major
contributor to the overall movement of insulin into brain
ISF. The very low CSF insulin concentrations seen in
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healthy fasting humans (typically ,10 pmol/L) are not suf-
ficient to initiate significant IR activation, assuming that the
IR in the CNS has kinetic properties similar to those found
for IR in peripheral tissues. Equally striking in this regard
are the results of kinetic studies in dogs (35) and humans
(32) showing that the transit of insulin from plasma to CSF
under hyperinsulinemic euglycemic clamp conditions is very
slow. Even after 4 h of pharmacologic elevations in plasma
insulin levels, CSF insulin concentrations remain below typ-
ical fasting plasma insulin levels (32). Such slow transport
of insulin to the brain via the CSF circulation would render
insulin an unlikely satiety signal.

Kinetic studies also demonstrate that insulin movement
from plasma to CSF involves a saturable transport system
(35) that is decreased in several insulin-resistant states (36–
38). It is not known whether the IR is involved in moving
insulin from blood to CSF during CSF formation by the
choroid plexus, or whether the observed saturation results
from the limited capacity of the more promiscuous trans-
porter, megalin. This protein is known to mediate leptin
transport across the choroid plexus (39) and can mediate
insulin transport across the renal tubular epithelial cells
(40). Mathematical modeling based on the transit time of
radioactive insulin from plasma to the cisternal CSF in dogs
suggests an intermediate compartment between plasma and
cisternal CSF. Whether that compartment is between the
blood-CSF barrier or simply reflects the mixing and flow
through the ventricular system is unknown (41).

Given the above issues, it is important to consider
recent data that clarifies the relationship between the
CSF, as found in the cerebral ventricles or the sub-
arachnoid space of the spinal cord, and the brain ISF. In
an elegant study, Iliff et al. (42) injected several fluores-
cent markers of varying weight into the lateral ventricles
of mice and traced their movement over time to examine
their penetration into brain tissue. They identified a para-
vascular pathway involving the Virchow-Robin space,
whereby CSF produced by the choroid plexus in the ven-
tricles first passes through the third and fourth ventricles
and eventually enters the cisterna magna (see Fig. 1 in
Iliff et al. [42]). From there, it enters the subarachnoid

space and subsequently accesses the Virchow-Robin space,
and this para-arteriolar pathway brings CSF into contact
with the blood vessel wall down to the level of the micro-
vasculature. At this interface, water, nutrients (e.g., glu-
cose, amino acids), electrolytes, and other solutes (e.g.,
possibly insulin) that cross the BBB now mix with CSF.
The solutes from this admixture enter the ISF of the brain
by passing through glial foot processes from astrocytes
that line the Virchow-Robin space (Fig. 2). These foot
processes act as filters that can restrict the entry of
very large molecular weight solutes from brain ISF. Iliff
et al. (43) suggest that the paravenous space also func-
tions to clear waste from the brain interstitium, which is
analogous to the lymphatic system in peripheral tissues.
Insulin added to the CSF at the blood-CSF barrier in the
choroid plexus will traverse the CSF circulation slowly as
part of the bulk flow of CSF. In humans, CSF is made at
a rate of ;700 mL/24 h, with a total of ;130 mL CSF
being present in the brain at any time. Considering the
relatively low insulin concentrations present in either the
ventricular or lumbar subarachnoid CSF (see above), it can
be estimated that the CSF circulation could only deliver
insulin to the brain parenchyma (on a per gram of tissue
basis) at a rate ;1/600th the rate of delivery to skeletal
muscle or adipose tissues and ,1/30,000th the rate of
delivery to the liver. This, of course, has implications for
the body of work described above, in which insulin is in-
fused into the CSF. Certainly, adding high doses of insulin
to the CSF will greatly raise CSF and eventually brain ISF
insulin levels, which may account for the reported effects
of ICV-infused insulin on peripheral glucose and fat
metabolism.

A few studies in rats have attempted to measure brain
ISF insulin concentration using microdialysis. These
studies detected very low fasting insulin concentrations
in the hypothalamus, which increased significantly 30–60
min after a meal or peripheral insulin infusion, a rise
more rapid than that seen in CSF (44,45). Whether these
measurements truly reflect ISF or a combination of ISF,
CSF, and vascular leakage in the region of the acutely
placed microdialysis catheter is uncertain. These concerns,

Figure 1—The potential pathways for insulin entry into brain ISF. The arterial and CSF insulin concentration is typical of that found in
peripheral blood and in human lumbar CSF in postprandial healthy humans. The brain microvascular endothelial cell (BMEC) insulin
concentration is estimated based on the observed ability of aortic endothelial cells to concentrate insulin (55).
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as well as the technical limitations that affect microdial-
ysis measurements of large molecules (46), have limited
the use of this method.

While the majority of work addressing insulin access
to brain tissue has used CSF as a surrogate for brain ISF,
some studies (47) have directly examined the “tissue con-
tent” of radiolabeled insulin in either brain sections or
tissue samples as a function of time after intravenous
injection in mice. These latter studies do not discriminate
between insulin delivered via the choroid plexus (CSF
circulation) and insulin delivered directly across the BBB
to specific nuclei. In addition, these studies have not been
conducted in a fashion that allows estimation of the brain
ISF insulin concentration; rather, they report on radioac-
tivity in specific regions. Such studies have indicated that
intravenously administered insulin reaches many areas of
the brain seemingly quickly, and appears to most readily
penetrate the hypothalamus, the pons/medulla, and the
hippocampus (48). Considering the possible direct move-
ment of insulin across the BBB, investigators have also
demonstrated that insulin binds to isolated brain micro-
vessels with high affinity, which is consistent with partic-
ipation by the IR (49) and that there is little, if any,
degradation of insulin incubated with brain microvessels.
Consequently, whether the rapid access of radiolabeled
(125I) insulin to the brain parenchyma simply reflects in-
sulin binding to endothelial cells in the brain microvascu-
lature, its uptake by the endothelial cell, or its actual
delivery to the brain ISF is not resolved by these studies.
This notwithstanding, these findings with 125I-insulin

suggest that transit across the BBB may be the preferred
route of insulin entry into the brain. However, if this is
the case, it appears fair to say that we know virtually
nothing about the cell biology of this process and how
it might—or might not—be regulated. This would appear
to be an important area for future investigation. Whether
the primary route for insulin transfer from the plasma to
the brain ISF happens at the BBB throughout the brain, or
is restricted to the choroid plexus and CSF, it is likely that
the endothelium is involved.

We have been working to unravel aspects of the
kinetics, cell biology, and regulation of insulin transport
by endothelial cells from peripheral vessels (50). That
transport appears to involve an insulin-regulated vesicular
trafficking process requiring caveolae. It begins with in-
sulin binding to its receptor (or at high insulin concen-
trations, the IGF-1 receptor) (51). In aortic endothelial
cells, the IR is associated with caveolae, and the knock-
down of caveolin-1 (the principal structural protein of
caveolae) or chemical disruption of caveolae interferes
with endothelial cell insulin transport (52). Likewise, in-
terfering with insulin action in the endothelial cell by
inhibiting signaling through the PI3 kinase, Src kinase,
or MAP kinase pathway impedes endothelial cell insulin
uptake (53). Perhaps importantly, transport activity
appears negatively impacted by insulin resistance (54).
It will be of great interest to see whether the brain endo-
thelium behaves in a similar fashion.

In closing, it is interesting to consider that this
question of how insulin reaches targets within the CNS

Figure 2—Pathways for insulin delivery to brain ISF. This figure depicts a longitudinal section of a capillary, with blood and CSF flowing
from left to right. The tight junctions (blocks) and adherens junctions (ovals) between endothelial cells in the brain vasculature prevent
paracellular transport through the endothelial layer. Insulin is in CSF at concentrations 5–10% of those in plasma. Insulin transported across
the endothelium would mix with the small amounts entering via CSF in the Virchow-Robin space, and the mixture could then enter brain
ISF. The astrocytes act as the final sieve for insulin before entry into the brain ISF. The mechanisms regulating transendothelial insulin
transport in brain microvasculature are unknown.
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may be part of a larger question of how a host of peptides
synthesized in the periphery navigate this voyage. Pep-
tides such as leptin, GLP-1, ghrelin, cholecystokinin, and
others each act centrally, and must reach brain ISF to
exert their specific effects. It will be fascinating to unravel
just how this occurs for insulin and these other peptides.
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